首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, activates mitogen-activated protein (MAP) kinase in a manner independent of cAMP in primary human endothelial cells. In order to delineate signaling pathways that link the receptor to the regulation of MAP kinase, the human A(2A) receptor was heterologously expressed in Chinese hamster ovary (CHO) and HEK293 cells. In both cell lines, A(2A) agonist-mediated cAMP accumulation was accompanied by activation of the small G protein rap1. However, rap1 mediates A(2A) receptor-dependent activation of MAP kinase only in CHO cells, the signaling cascade being composed of G(s), adenylyl cyclase, rap1, and the p68 isoform of B-raf. This isoform was absent in HEK293 cells. Contrary to CHO cells, in HEK293 cells activation of MAP kinase by A(2A) agonists was not mimicked by 8-bromo-cAMP, was independent of Galpha(s), and was associated with activation of p21(ras). Accordingly, overexpression of the inactive S17N mutant of p21(ras) and of a dominant negative version of mSos (the exchange factor of p21(ras)) blocked MAP kinase stimulation by the A(2A) receptor in HEK 293 but not in CHO cells. In spite of the close homology between p21(ras) and rap1, the S17N mutant of rap1 was not dominant negative because (i) overexpression of rap1(S17N) failed to inhibit A(2A) receptor-dependent MAP kinase activation, (ii) rap1(S17N) was recovered in the active form with a GST fusion protein comprising the rap1-binding domain of ralGDS after A(2A) receptor activation, and (iii) A(2A) agonists promoted the association of rap1(S17N) with the 68-kDa isoform of B-raf in CHO cells. We conclude that the A(2A) receptor has the capacity two activate MAP kinase via at least two signaling pathways, which depend on two distinct small G proteins, namely p21(ras) and rap1. Our observations also show that the S17N version of rap1 cannot be assumed a priori to act as a dominant negative interfering mutant.  相似文献   

6.
7.
8.
9.
Despite the involvement in diverse physiological process and pleiotropic expression profile, the molecular functions of Nur77 are not likely to be fully elucidated. From the effort to find a novel function of Nur77, we detected molecular interaction between Nur77 and PKC. Details of interaction revealed that C-terminal ligand binding domain (LBD) of Nur77 specifically interacted with highly conserved glycine-rich loop of PKC required for catalytic activity. This molecular interaction resulted in inhibition of catalytic activity of PKCtheta by Nur77. C-terminal LBD of Nur77 is sufficient for inhibiting the phosphorylation of substrate by PKCtheta. Ultimately, inhibition of catalytic activity by Nur77 is deeply associated with repression of PKC-mediated activation of AP-1 and NF-kappaB. Therefore, these findings demonstrate a novel function of Nur77 as a PKC inhibitor and give insights into molecular mechanisms of various Nur77-mediated physiological phenomena.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
The autonomous activation function-2 (AF-2) in the mineralocorticoid receptor (MR) E/F domain is known to play a major role in the ligand-induced transactivation function of MR; however, it remained unclear about the transactivation function of its A/B domain. We therefore tried to characterize the MR A/B domain as the AF-1 and further studied the actions of known coactivators for AF-2 in the E/F ligand-binding domain in the function of the MR A/B domain. Deletion analyses of rat and human MRs revealed that the A/B domains harbor a transactivation function acting as AF-1. The MR mutant (E959Q) with a point mutation in helix 12, which causes a complete loss of MR AF-2 activity, still retained ligand-induced transactivation function, indicating a significant role for AF-1 in the full activity of the ligand-induced MR function. Among the coactivators tested to potentiate the MR AF-2, TIF2 and p300 potentiated the MR AF-1 through two different core regions [amino acids (a.a.) 1-169, a.a. 451-603] and exhibited functional interactions with the MR A/B domain in the cultured cells. However, such interactions were undetectable in a yeast and in an in vitro glutathione-S-transferase pull-down assay, indicating that the functional interaction of TIF2 and p300 with the MR A/B domain to support the MR AF-1 activity require some unknown nuclear factor(s) or a proper modification of the A/B domain in the cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号