首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

2.
Induction of cytokeratin expression in human mesenchymal cells   总被引:3,自引:0,他引:3  
We studied the phenotypic features of some typical human mesenchymal cells, including decidual stromal cells and adult and fetal fibroblasts under different cell culture conditions by using antibodies to intermediate filament proteins and desmoplakins. In cell culture, the decidual stromal cells rapidly acquired typical fibroblastoid appearance with abundant arrays of vimentin filaments while the cytokeratin-positive epithelial cells, occasionally found in typical epithelioid colonies, lacked vimentin positivity and showed desmoplakin positivity. Within a few days, many of the stromal cells started to present cytokeratin positivity when cultured either in Condimed or in Chang medium. The cytokeratin positivity was first detected in small, scattered cytoplasmic dotted fibrils or in perinuclear dotlike aggregates with fibrillar projections. Later, denser cytokeratin-positive fibrillar arrays could also be seen in stromal cells, which lacked desmoplakin positivity as judged by two monoclonal antibodies. Decidual stromal cells were also cloned and in five out of ten clones some of the cells acquired a similar cytokeratin positivity when transferred into Chang or Condimed medium. Immunoblotting results indicated that cytokeratins 8, 18, and 19 can be found in these cultures. Similar cytokeratin positivity could also be seen in the same culture conditions in cultured fetal fibroblasts from skin, chorionic villi, and lung but not in young or adult skin fibroblast cultures. The present results suggest that decidual stromal cells as well as some embryonal mesenchymal cells can acquire epithelial differentiation in vitro as judged by the emergence of cytokeratin proteins. This ability appears to be lost in the corresponding adult cell. The results furthermore suggest that cytokeratin fibrils can be organized in the cytoplasm without an apparent organization center and that neither the appearance of desmoplakins nor the formation of cell-to-cell contacts are required for cytokeratin filament assembly.  相似文献   

3.
The metanephric mesenchyme becomes converted into epithelial tubules if cultured in transfilter contact with an inductor tissue. The expression of intermediate filaments (IFs), used as cell-type-specific markers has been studied in this model system for differentiation and organogenesis. In immunofluorescence microscopy of frozen sections, the undifferentiated cells of isolated metanephric mesenchymes uniformly showed IFs of vimentin type only. Also, when cultured as a monolayer, cells from the uninduced mesenchymes showed only vimentin filaments. In frozen sections of transfilter explants, epithelial tubules apparently negative for vimentin could be seen after 3 days in culture, but expression of cytokeratin could not be demonstrated in the developing tubules until the fourth day of culture. Sections of explants cultured further showed tubule cells with distinct fibrillar cytokeratin positivity. The appearance of cytokeratin in the explants was also demonstrated with immunoblotting experiments, using two different cytokeratin antibodies. Expression of IFs was further examined in monolayer cultures of metanephric mesenchymes which had been initially exposed to a short transfilter induction pulse. In these experiments, cytokeratin-positive cells could be demonstrated after a total of 4 days in culture. Double immunofluorescence experiments showed varying amounts of vimentin in the cytokeratin-positive cells: after 4 days in culture, most cytokeratin-positive cells still showed vimentin-positivity although often in a nonfibrillar form. During further culture, gradual disappearance of vimentin-specific fluorescence was observed in cytokeratin-positive cells. The results suggest that the vimentin-positive metanephric mesenchyme cells lose their fibrillar vimentin organization upon induction that leads to kidney tubule formation. This change may be essential for the transformation from an undifferentiated mesenchymal cell into a specialized epithelial cell. Cytokeratin filaments, regarded as a marker for epithelial cells, seem to appear simultaneously with or soon after the change in vimentin organization. These changes in IF expression also occur in monolayer cultures of mesenchyme cells initially exposed to a short transfilter induction pulse. This suggests that epithelial differentiation, as revealed by the emergence of cytokeratin positivity, may occur even in the absence of a clear morphological differentiation and three-dimensional organization of the cells.  相似文献   

4.
Testicular seminoma has in the past been considered to represent a germ cell tumor incapable of further differentiation. In recent years this view has been challenged on the basis of morphologic and chromosomal studies. Moreover, studies of intermediate filaments (IF) of seminoma cells have provided evidence of the capability of seminoma cells to differentiate in different directions. In the present study of the IF protein profile of 26 human testicular seminomas, using frozen as well as formalin-fixed, paraffin-embedded tissues, we report evidence of a heterogeneous differentiation potential inherent in these neoplasms. Thus, in 4 of the seminomas neither cytokeratins nor vimentin were detected; 3 showed vimentin positive cells but no cytokeratins; in 4 seminomas only cytokeratins were detected. In the remaining 15 cases both cytokeratins and vimentin were present, with occasional cells demonstrating coexpression of cytokeratin and vimentin. While the cytokeratins present were mostly of the "simple epithelial type", in 2 instances seminoma cells also contained cytokeratins 4 and 17, normally found in stratified and/or complex glandular epithelia. Furthermore, in 3 cases scattered tumor cells stained for desmin and in 2 other seminomas neurofilaments were identified. All of the cases showed variable positive staining for desmoplakins and desmoglein, indicative of the presence of desmosomes. It can therefore be concluded that, while some seminomas seem to be devoid of IFs, most of them show varied differentiation patterns usually with epithelial features but occasionally also with components commonly regarded as characteristic of myogenic or neurogenic differentiation. These observations may help to elucidate the relationship of seminomas to other germ cell tumors, and also contribute to our understanding of the histogenesis of these neoplasms.  相似文献   

5.
By two-dimensional gel electrophoresis of proteins insoluble in detergents and high-salt buffer and immunofluorescence microscopy with a panel of polypeptide-specific antibodies to proteins of intermediate filaments (IF) and desmosomes, we have characterized the cytoskeletons of normal human thyroid gland, several kinds of benign lesion (goiter, Hashimoto's and Graves' diseases, adenomas), and the major thyroid carcinomas (follicular, papillary, medullary, and anaplastic). In all these tissues, desmoplakins and cytokeratins 7, 8, 18, and 19 were identified. While cytokeratins 8 and 18 occurred in all epithelial cells and cytokeratin 7 was also rather widespread, cytokeratin 19 occurred in amounts variable between the different types of tissues and in normal thyroid gland was restricted to certain clusters of follicular epithelial cells. Of all samples studied, in none did we detect cytokeratins commonly associated with stratified epithelia such as cytokeratins 4-6, 10, and 13-17, indicating that these are infrequent, if at all present, in such tissues. Coexpression of cytokeratins with vimentin appears to occur constitutively in follicular epithelial cells of normal thyroid gland and is also frequent in the diverse carcinomas, though to various degrees. Medullary carcinomas are exceptional, not only because they express neuroendocrine markers, but also because they coexpress combinations of cytokeratin IFs with neurofilaments and/or vimentin IFs in some cases, but not all. The results are discussed in relation to states of cell differentiation in normal and diseased thyroid gland and with respect to their value in tumor diagnosis.  相似文献   

6.
Proteins of contractile and cytoskeletal elements have been studied in bovine lens-forming cells growing in culture as well as in bovine and murine lenses grown in situ by immunofluorescence microscopy using antibodies to the following proteins: actin, myosin, tropomyosin, α-actinin, tubulin, prekeratin, vimentin, and desmin. Lens-forming cells contain actin, myosin, tropomyosin, and α-actinin which in cells grown in culture are enriched in typical cable-like structures, i.e. microfilament bundles. Antibodies to tubulin stain normal, predominantly radial arrays of microtubules. In the epithelioid lens-forming cells of both monolayer cultures grown in vitro and lens tissue grown in situ intermediate-sized filaments of the vimentin type are abundant, whereas filaments containing prekeratin-like proteins (‘cytokeratins’) and desmin filaments have not been found. The absence of cytokeratin proteins observed by immunological methods is supported by gel electrophoretic analyses of cytoskeletal proteins, which show the prominence of vimentin and the absence of detectable amounts of cytokeratins and desmin. This also correlates with electron microscopic observations that typical desmosomes and tonofilament bundles are absent in lens-forming cells, as opposed to a high density of vimentin filaments. Our observations show that the epithelioid lens-forming cells have normal arrays of (i) microfilament bundles containing proteins of contractile structures; (ii) microtubules; and (iii) vimentin filaments, but differ from most true epithelial cells by the absence of cytokeratins, tonofilaments and typical desmosomes. The question of their relationship to other epithelial tissues is discussed in relation to lens differentiation during embryogenesis. We conclude that the lens-forming cells either represent an example of cell differentiation of non-epithelial cells to epithelioid morphology, or represent a special pathway of epithelial differentiation characterized by the absence of cytokeratin filaments and desmosomes. Thus two classes of tissue with epithelia-like morphology can be distinguished: those epithelia which contain desmosomes and cytokeratin filaments and those epithelioid tissues which do not contain these structures but are rich in vimentin filaments (lens cells, germ epithelium of testis, endothelium).  相似文献   

7.
Ten nephroblastomas were investigated by antibodies to intermediate filaments. In seven cases, which in light microscopy were characterized by the presence of blastema and tubules, immunofluorescence microscopy with IF-specific antibodies reveals expression of cytokeratin and vimentin in blastema cells, while tubules were only labelled by the cytokeratin antibodies. This result was independent of whether the conventional cytokeratin antibody or monoclonal antibodies specific for cytokeratin 18 were used. Stroma cells were vimentin-positive. In two cases nephroblastomas were undifferentiated and also lacked tubuli formation. In both these tumors blastema cells were vimentin-positive and cytokeratin-negative. Finally one case of clear cell sarcoma of the kidney could only be labelled by the vimentin antibody. Thus antibodies to intermediate filaments seem to be useful tools to distinguish nephroblastomas from neuroblastomas or rhabdomyosarcomas, especially in cases of metastasis.  相似文献   

8.
In higher vertebrates the cytoskeleton of glial cells, notably astrocytes, is characterized (a) by masses of intermediate filaments (IFs) that contain the hallmark protein of glial differentiation, the glial filament protein (GFP); and (b) by the absence of cytokeratin IFs and IF-anchoring membrane domains of the desmosome type. Here we report that in certain amphibian species (Xenopus laevis, Rana ridibunda, and Pleurodeles waltlii) the astrocytes of the optic nerve contain a completely different type of cytoskeleton. In immunofluorescence microscopy using antibodies specific for different IF and desmosomal proteins, the astrocytes of this nerve are positive for cytokeratins and desmoplakins; by electron microscopy these reactions could be correlated to IF bundles and desmosomes. By gel electrophoresis of cytoskeletal proteins, combined with immunoblotting, we demonstrate the cytokeratinous nature of the major IF proteins of these astroglial cells, comprising at least three major cytokeratins. In this tissue we have not detected a major IF protein that could correspond to GFP. In contrast, cytokeratin IFs and desmosomes have not been detected in the glial cells of brain and spinal cord or in certain peripheral nerves, such as the sciatic nerve. These results provide an example of the formation of a cytokeratin cytoskeleton in the context of a nonepithelial differentiation program. They further show that glial differentiation and functions, commonly correlated with the formation of GFP filaments, are not necessarily dependent on GFP but can also be achieved with structures typical of epithelial differentiation; i.e., cytokeratin IFs and desmosomes. We discuss the cytoskeletal differences of glial cells in different kinds of nerves in the same animal, with special emphasis on the optic nerve of lower vertebrates as a widely studied model system of glial development and nerve regeneration.  相似文献   

9.
Summary The anatomical distribution of cytokeratins and vimentin was investigated by means of immunohistochemistry in the human epididymis. Epithelial cells of the ductuli efferentes and the corpus epididymidis were positive for cytokeratins and vimentin. The expression of epithelial vimentin decreased toward the cauda epididymidis, whereas cytokeratins remained unchanged. The epithelium of the ductus deferens was negative when antibodies against vimentin were used. With monoclonal antibodies to individual cytokeratins, the presence of cytokeratins 7, 8, 18, and 19 was demonstrated histochemically throughout the epithelium of the epididymis. Monoclonal antibodies specific for cytokeratin 17 allowed immunohistochemical differentiation between the ductuli efferentes and the ductus epididymidis.  相似文献   

10.
We studied the distribution of intermediate-sized filaments in developing and adult kidneys and renal cell carcinoma (RCC) by indirect immunohistochemistry, using a pan-cytokeratin mouse monoclonal antibody (MAb), chain-specific anti-cytokeratin MAb, and anti-vimentin and anti-desmin MAb, to resolve controversy concerning intermediate-sized filament expression in the kidney. With the pan-cytokeratin MAb, cytokeratin expression was detectable in all stages of nephron development, starting with expression in the renal vesicles, the progenitors of the glomeruli, proximal tubules, Henle's loop, and part of the distal tubules. Using chain-specific anti-cytokeratin MAb, cytokeratin 8 and 18 expression was demonstrated in all developmental structures of the nephron, whereas cytokeratin 19 expression was more complex. None of the nephrogenic blastema cells from which the renal vesicles arise expressed cytokeratins. Transient expression of vimentin and cytokeratin 19 was observed in differentiating collecting ducts and proximal tubule cells at the S-shaped stage of nephron development, respectively. In RCC, cytokeratin expression closely resembled that of the mature proximal tubule, i.e., RCC cells expressed cytokeratins 8 and 18. However, in a subset of RCC additional cytokeratin 19 expression was noted. In addition, all except one RCC showed co-expression of cytokeratins and vimentin.  相似文献   

11.
Summary Immunohistochemistry with monoclonal and polyclonal antibodies revealed the presence of cytokeratins in epithelial cells of Rathke's cysts in the pars intermedia of the human pituitary gland. With monoclonal antibodies specific for individual cytokeratins, the expression of CK 18, CK 8, CK 7, and CK 19 could be shown in these cells. Within the hypophysis, CK 19 and CK 7 were restricted to Rathke's cysts and a few epithelial cell clusters in the pars tuberalis, whereas other cytokeratins were also present in endocrine cells of the pars distalis. Furthermore, vimentin and, focally, glial fibrillary acidic protein (GFAP) were detected in the cystic epithelia. By double labelling, coexpression of cytokeratin and vimentin, GFAP and cytokeratin, and GFAP and vimentin could be demonstrated. Compiled data of all known cases of coexpression of cytokeratin and vimentin in normal cells reveal physiological correlations and suggest a functional significance of this rare type of coexpression of intermediate filament proteins.  相似文献   

12.
Of the various intermediate filament (IF) proteins certain cytokeratins, usually a hallmark of epithelial differentiation, can also be detected in some non-epithelial cells in low amounts. We have studied a representative case of this atypical expression, the smooth muscle cells of the blood vessel walls of the human umbilical cord, at the protein and nucleic acid level, by light and electron microscopic immunolocalization, gel electrophoresis and immunoblotting of cytoskeletal proteins, and mRNA identification by Northern blotting. For the latter we have used sensitive probes for various cytokeratins, including new probes for cytokeratin 19. We also describe the chromosome 17 locus comprising the genes for cytokeratins 15 and 19, and we emphasize the occurrence of several unusual and evolutionarily stable sequence elements in the introns of the cytokeratin 19 gene. Most, perhaps all smooth muscle cells of these blood vessels, positively identified by the presence of desmin and smooth muscle type alpha-actin, are immunostained by antibodies specific for cytokeratins 8 and 18, and a subpopulation also contains cytokeratin 19. Immunoelectron microscopy indicates that these cytokeratins are arranged in IFs that are distributed differently from the majority of the IFs formed by desmin and vimentin. Gel electrophoresis of cytoskeletal proteins from microdissected vascular wall tissue shows that the amounts of cytokeratins 8 and 18 present in these tissues are very low, representing less than 1% of the total IF protein, and that cytokeratin 19 is present only in trace amounts. Correspondingly, the contents of mRNAs for cytokeratins 8, 18 and 19 in these tissues are much lower than those present in epithelial cells examined in parallel. We have also established cell cultures derived from umbilical cord vascular smooth muscles that have maintained the expression of cytokeratins 8, 18 and 19, together with vimentin and the smooth muscle type alpha-actin, but do not synthesize desmin. In these cell cultures the cytokeratins are present in much higher amounts than in the original tissue and form IFs that, surprisingly, show a similar distribution as the vimentin IFs and, upon treatment of the cells with colcemid, collapse into juxtanuclear aggregates, often even more effectively than the vimentin IFs do. We conclude that in a certain subtype of smooth muscle cells, the genes encoding cytokeratins of the "simple epithelial type", i.e., cytokeratins 8, 18 and 19, are expressed and that the low level expression of these genes is compatible with myogenic differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
During myogenesis the intermediate-sized filament (IF) cytoskeleton is characterized by increasing proportions of desmin. While skeletal and smooth muscle formation occurs in free mesenchymal cells containing vimentin-type IFs, myocardial development starts from a polar epithelium containing cytokeratin IFs and desmosomes. Therefore, we have studied the formation of the epicardium and the myocardium in different vertebrate species, combining light and electron microscopic immunolocalization techniques with gel-electrophoretic analyses of cytoskeletal proteins of microdissected myocardial tissue at differing developmental stages. In this report, we describe results obtained from advanced stages of myocardial differentiation. In all species studied the myocardial cell possess IFs abundant in desmin, often together with smaller amounts of vimentin, and the mesothelial layer of the epicardium contains cytokeratin IFs. However, we have observed remarkable interspecies differences with respect to the occurrence of cytokeratins in embryonic myocardial cells. In fetal human myocardium, from week 10 of pregnancy on, but not in juvenile and adult myocardium, and in chicken myocardium of all stages examined (until several days after hatching) specific immunostaining was seen with certain broad-range cytokeratin antibodies as well as with antibodies specific for cytokeratins 18 (in both species) and 8 (showing significant reaction only in human). This cytokeratin immunoreaction, however, did not appear in IFs extending throughout the cytoplasm or at Z-lines, but was localized in punctate arrays representing aggregates of dense material. The aggregates were often enriched at, but not restricted to, the desmosomal plaques of the intercalated discs. These observations were supported by gel-electrophoretic demonstration of small but significant amounts of cytokeratins 18 (in both species) and 8 (detected only in human) in microdissected myocardial tissue. We also observed cytokeratins in smooth muscle cells of some cardiac blood vessels. In contrast, bovine myocardium of advanced fetal age as well as rat and mouse myocardium (from fetal day 12 on) were negative for cytokeratins with all methods, although epicardial cytokeratin IFs were demonstrable. These observations are discussed in relation to myocardial histogenesis and to general problems of cytokeratin gene expression control in epithelial and nonepithelial cells.  相似文献   

14.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

15.
We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.  相似文献   

16.
Recently, bovine pulmonary microvascular endothelial cells (PMV) were shown to contain cytokeratin 8 and 19 intermediate filaments (Patton et al., 1990). In this study, we examine the effect of culture contiguity and vasoactive agents on the content and assembly of cytokeratins in PMV. Immunofluorescent staining of PMV cultures show a progressive increase in cytokeratin filament assembly. In freshly plated PMV, keratin appears as hazy staining (less than 4 hr) and later organizes into keratin 'plaques' (4 days) associated with cell-cell contacts; post confluent (greater than 7 days) PMV cultures contain fully assembled cytokeratin filaments which extend to the cell periphery and approach filaments in apposed cells. Vimentin filaments are also present in freshly plated PMV cultures but unlike cytokeratins, become less filamentous at confluency. This cell density-dependent modulation of cytokeratins is also demonstrated by densitometric analysis of autoradiographs of 35S-methionine labeled keratins in which PMV keratin content is elevated at high cell densities, while vimentin content remains constant. Desmoplakins I and II, components of desmosomes, could not be demonstrated in PMV by immunoblotting. PMV treated with permeability modulating agents (4 x 10(-3) M EGTA, 1 microM cytochalasin B, 1 microM bradykinin, 1 microM A23187, and 1 microM PMA) exhibit border retraction and altered keratin filament staining. From these studies we conclude: 1) cytokeratin 8 and 19 containing intermediate filaments are present in confluent PMV cultures with vimentin but without desmosomes, 2) the state of assembly of PMV cytokeratin and vimentin filaments appears to be oppositely affected by culture contiguity, and 3) treatment of monolayers with vasoactive agents alters the state of assembly of cytokeratin filaments. We speculate that modulation of cytokeratin assembly in PMV may be involved in regulation of pulmonary microvascular structure and function.  相似文献   

17.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Using electron microscopy and immunohistochemistry with a large panel of antibodies to various cytoskeletal proteins we have noted that the single- or multi-layered sheaths of epithelioid cells ("neurothelia") surrounding peripheral nerves (perineurial cells) or structures of the central nervous system, including the optic nerve (arachnoid cells), show remarkable interspecies differences in their cytoskeletal complements. In two anuran amphibia examined (Xenopus laevis, Rana ridibunda), the cells of both forms of neurothelia, i.e., perineurial and arachnoid, are interconnected by true desmosomes and are rich intermediate-sized filaments (IFs) of the cytokeratin type. Among higher vertebrates, a similar situation is found in the bovine and chicken nervous systems, in which the arachnoid cells of the meninges contain desmosomes and IFs of both the cytokeratin (apparently with restricted epitope accessibilities in the chicken) and the vimentin type, whereas the perineurial cells of many nerves contain cytokeratin IFs, often together with vimentin, but no desmosomes. In contrast, in rat arachnoidal and perineurial cells significant reactions have been observed neither for cytokeratins nor for desmosomes. In the human nervous system, cytokeratins and desmosomes have also not been seen in the various perineuria studied whereas desmosomes are frequent in arachnoidal cell layers which are dominated by vimentin IFs and only in certain small regions of the brain contain some additional cytokeratins. The occurrence of cytokeratins in the tissues found positive by immunohistochemistry has been confirmed by gel electrophoresis of cytoskeletal proteins, followed by immunoblotting. Our results emphasize both similarities and differences between the neurothelia on the one hand and epithelia or endothelia on the other, justifying classification as a separate kind of tissue, i.e., neurothelium. The observations of interspecies differences lead to the challenging conclusion that neither desmosomes nor cytokeratins are essential for the basic functions of neurothelial sheaths nor does the specific type of IF protein expressed in these cells appear to matter in this respect. The results are also discussed in relation to the cytoskeletal characteristics of other epithelioid tissues and of human neurothelium-derived tumors.  相似文献   

19.
Cells of a clonal line (BMGE + HM) selected from bovine mammary gland epithelial cell cultures are described which, after reaching confluence, do not assume typical epithelioid morphology, but form elongated cells with long slender processes extending over the surfaces of other cells. However, cells of this line which display non-epithelioid morphology and are exceptionally rich in actin microfilaments are identified as epithelial cells by their synthesis of cytokeratins and desmosomal plaque proteins, as demonstrated by immunofluorescence and immunoelectron microscopy and by gel electrophoresis of cytoskeletal proteins. The cells do not produce vimentin and desmin filaments. The specific cytokeratin polypeptides of these myoid cells are identical to those present in normal epithelioid BMGE + H cells but are arranged in unusual arrays of meshworks of finely dispersed, non-fasciated filaments and granular structures. Desmosomal plaque proteins, notably desmoplakins, are abundant, but the electron microscopic appearance of the desmosomes is abnormal in that most of them are associated with a second accessory plaque formed at a distance of 0.1-0.15 micron from the normal desmosomal plaque. Both cytokeratin filaments and desmosomal structures are found throughout the whole cytoplasm, including the extended cell processes. The existence of an epithelial cell line with such an unusual morphology demonstrates the importance of non-morphological criteria in identifying epithelium-derived cells. Our findings also indicate that dramatic differences of cell shape and organization of epithelial cells need not necessarily be associated with changes in the expression of specific cytoskeletal proteins. The possible origin of this cell line from myoepithelial cells is discussed.  相似文献   

20.
During normal murine palatogenesis, regional specific differentiation of the epithelium results in three cell phenotypes: nasal (ciliated pseudostratified columnar cells), oral (stratified squamous cells) and medial edge (migratory, epithelio-mesenchymally transformed cells). We have developed a defined, serum-free, culture system which supports the growth and differentiation of isolated murine embryonic palatal epithelia in vitro. Using immunofluorescence microscopy, an established panel of antibodies was used to characterise the cytokeratin intermediate filament profile of palatal epithelial sheets at a precise developmental stage, following culture in serum-free medium with and without either transforming growth factor alpha (TGF alpha) or 10% donor calf serum (DCS). The morphologically discernable oral, medial edge and nasal phenotypes exhibited distinctive cytokeratin profiles, which remained consistent for all culture conditions, and which correlated with the known differentiation states of the epithelial types. The oral epithelia stained positively for cytokeratin 19 and cytokeratins characteristic of multilayered epithelia (1, 5, 14). Nasal epithelia stained similarly but in addition expressed the simple-epithelial cytokeratin pair, 8 and 18. Medial edge epithelia also expressed cytokeratins 1, 5 and 14 but with the exception of a few isolated cells there was no staining for cytokeratins 8 and 18. Cytokeratin 19 was absent specifically from the medial edge epithelial cells: this result may be related to the loss of cytokeratin expression observed during epithelial-mesenchymal transformations. By exhibiting a complexity of expression linked to differentiation state and independent of culture conditions, cytokeratins constitute useful markers of palatal epithelial differentiation in vitro as well as in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号