首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DC) are important APCs that control allergen-induced airway responses by interacting directly with T cells. Leukotriene B(4) (LTB(4)), interacting with its high-affinity receptor, LTB(4) receptor 1 (BLT1), is known to attract and activate leukocytes during inflammation. We have previously shown that BLT1 expression on Ag-primed T cells is required for the development of airway hyperresponsiveness (AHR; Miyahara et al. 2005. Am. J. Respir. Crit. Care Med. 172: 161-167). However, the role for the LTB(4)-BLT1 pathway in DC function in allergen-induced airway responses has not been defined. Bone marrow-derived DCs (BMDC) were generated. Naive BALB/c mice received OVA-pulsed BLT1-deficient (BLT1(-/-)) BMDCs or wild-type BMDCs intratracheally and were then challenged with OVA for 3 days. Airway responses were monitored 48 h after the last allergen challenge. BLT1(-/-) BMDCs showed normal maturation judged from surface expression of CD markers. Compared with recipients of wild-type BMDCs, mice that received BLT1(-/-) BMDCs developed significantly lower AHR to inhaled methacholine, lower goblet cell metaplasia, and eosinophilic infiltration in the airways and decreased levels of Th2 type cytokines in the bronchoalveolar lavage fluid. Migration of BLT1(-/-) BMDCs into peribronchial lymph nodes was significantly impaired compared with BLT1(+/+) BMDCs after intratracheal instillation. These data suggest that BLT1 expression on DCs is required for migration of DCs to regional lymph nodes as well as in the development of AHR and airway inflammation.  相似文献   

2.
TLR7 is an innate signaling receptor that recognizes single-stranded viral RNA and is activated by viruses that cause persistent infections. We show that TLR7 signaling dictates either clearance or establishment of life-long chronic infection by lymphocytic choriomeningitis virus (LCMV) Cl 13 but does not affect clearance of the acute LCMV Armstrong 53b strain. TLR7(-/-) mice infected with LCMV Cl 13 remained viremic throughout life from defects in the adaptive antiviral immune response-notably, diminished T?cell function, exacerbated T?cell exhaustion, decreased plasma cell maturation, and negligible antiviral antibody production. Adoptive transfer of TLR7(+/+) LCMV immune memory cells that enhanced clearance of persistent LCMV Cl 13 infection in TLR7(+/+) mice failed to purge LCMV Cl 13 infection in TLR7(-/-) mice, demonstrating that a TLR7-deficient environment renders antiviral responses ineffective. Therefore, methods that promote TLR7 signaling are promising treatment strategies for chronic viral infections.  相似文献   

3.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

4.
Toll-like receptor 2 (TLR2), a key immune receptor in the TLR family, is widely expressed in various systems, including the immune and nervous systems and plays a critical role in controlling innate and adaptive immune responses. We previously reported that opioids inhibit cell growth and trigger apoptosis. However, the underlying mechanism by which TLR2 mediates apoptosis in response to opioids is not yet known. Here we show that chronic morphine treatment in primary neurons dramatically increased the expression of TLR2 at both the messenger RNA and protein levels. In addition, TLR2 deficiency significantly inhibited chronic morphine-induced apoptosis in primary neurons. Activation of caspase-3 after morphine treatment is impaired in TLR2 deficient primary neurons. Moreover, morphine treatment failed to induce an increased level of phosphorylated glycogen synthase kinase 3 beta (GSK3β) in TLR2 deficient primary neurons, suggesting an involvement of GSK3β in morphine-mediated TLR2 signaling. These results thus demonstrate that opioids prime neurons to undergo apoptosis by inducing TLR2 expression. Our data suggest that inhibition of TLR2 is capable of preventing opioids-induced damage to neurons.  相似文献   

5.
Toll-like receptor 2 ligands as adjuvants for human Th1 responses   总被引:7,自引:0,他引:7  
Bacterial lipopeptides (bLPs) are increasingly used as adjuvants to activate cell-mediated immune responses to foreign Ags. To explore mechanisms whereby bLPs adjuvant T cell responses, we stimulated human PBMCs with bLPs. We found that bLPs stimulate T cells to proliferate and produce IFN-gamma in an accessory cell-dependent manner and in the absence of exogenous protein Ags. The ability of bLPs to stimulate T cell proliferation was Toll-like receptor 2 dependent and required IL-12, interaction with costimulatory molecules, and MHC proteins. Our data suggest that bLPs adjuvant adaptive Th1 responses by enhancing Ag presentation of endogenous peptides.  相似文献   

6.
Reports have recently suggested that eosinophils have the potential to modulate allergen-dependent pulmonary immune responses. The studies presented expand these reports demonstrating in the mouse that eosinophils are required for the allergen-dependent Th2 pulmonary immune responses mediated by dendritic cells (DCs) and T lymphocytes. Specifically, the recruitment of peripheral eosinophils to the pulmonary lymphatic compartment(s) was required for the accumulation of myeloid DCs in draining lymph nodes and, in turn, Ag-specific T effector cell production. These effects on DCs and Ag-specific T cells did not require MHC class II expression on eosinophils, suggesting that these granulocytes have an accessory role as opposed to direct T cell stimulation. The data also showed that eosinophils uniquely suppress the DC-mediated production of Th17 and, to smaller degree, Th1 responses. The cumulative effect of these eosinophil-dependent immune mechanisms is to promote the Th2 polarization characteristic of the pulmonary microenvironment after allergen challenge.  相似文献   

7.
Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.  相似文献   

8.
Previously we demonstrated that basolateral LPS inhibits HCO(3)(-) absorption in the renal medullary thick ascending limb (MTAL) through TLR4-dependent ERK activation. Here we report that the response of the MTAL to basolateral LPS requires TLR2 in addition to TLR4. The basolateral addition of LPS (ultrapure Escherichia coli K12) decreased HCO(3)(-) absorption in isolated, perfused MTALs from wild-type mice but had no effect in MTALs from TLR2(-/-) mice. In contrast, inhibition of HCO(3)(-) absorption by lumen LPS was preserved in TLR2(-/-) MTALs, indicating that TLR2 is involved specifically in mediating the basolateral LPS response. LPS also did not increase ERK phosphorylation in MTALs from TLR2(-/-) mice. TLR2 deficiency had no effect on expression of TLR4, MD-2, or MyD88. However, LPS-induced recruitment of MyD88 to the basolateral membrane was impaired in TLR2(-/-) MTALs. Inhibition of HCO(3)(-) absorption by LPS did not require CD14. Co-immunoprecipitation studies demonstrated an association between TLR4 and TLR2. Inhibition of HCO(3)(-) absorption by TLR2-specific ligands was preserved in MTALs from TLR4(-/-) mice. These results indicate that the effect of basolateral LPS to inhibit HCO(3)(-) absorption in the MTAL through MyD88-dependent ERK activation depends on a novel interaction between TLR4 and TLR2. TLR2 plays a dual role in the induction of intracellular signals that impair MTAL function, both through cooperation with TLR4 to mediate ERK signaling by LPS and through a TLR4-independent signaling pathway activated by Gram-positive bacterial ligands. Regulation of TLR2 expression and its interaction with TLR4 may provide new mechanisms for controlling and therapeutic targeting of TLR4-mediated LPS responses.  相似文献   

9.
Silibinin is the primary active compound in silymarin. It has been demonstrated to exert anti-carcinogenic effects and hepato-protective effects. However, the effects of silibinin on the maturation and immunostimulatory activities exhibited by dendritic cells (DCs) remain, for the most part, unknown. In this study, we have attempted to determine whether silibinin can influence surface molecule expression, dextran uptake, cytokine production, capacity to induce T-cell differentiation, and the signaling pathways underlying these phenomena in murine bone marrow-derived DCs. Silibinin was shown to significantly suppress the expression of CD80, CD86, MHC class I, and MHC class II in the DCs, and was also associated with impairments of LPS-induced IL-12 expression in the DCs. Silibinin-treated DCs proved highly efficient with regard to Ag capture via mannose receptor-mediated endocytosis. Silibinin also inhibited the LPS-induced activation of MAPKs and the nuclear translocation of the NF-kappaB p65 subunit. Additionally, silibinin-treated DCs evidenced an impaired induction of Th1 response, and a normal cell-mediated immune response. These findings provide new insight into the immunopharmacological functions of silibinin, especially with regard to their impact on the DCs. These findings expand our current understanding of the immunopharmacological functions of silibinin, and may prove useful in the development of therapeutic adjuvants for acute and chronic DC-associated diseases.  相似文献   

10.
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1?/? mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.  相似文献   

11.
IL-6 production by pulmonary dendritic cells impedes Th1 immune responses   总被引:11,自引:0,他引:11  
Mucosal tissues, such as the lung, are continually exposed to both foreign and environmental Ags. To counter the potential inflammatory tissue injury of chronic Th1-mediated responses against these Ags, mucosal sites may skew toward Th2 immune responses. However, the mechanism by which this occurs is unknown. Dendritic cells (DC), as orchestrators of the immune response, skew Th1/Th2 differentiation by cytokine secretion and expression of specific cell surface markers. We compared DC from mucosal and systemic locations. In this study, we show that the lung lacks a CD8alpha(+) DC subpopulation and contains DC that appear less mature than splenic DC. Furthermore, we demonstrate that pulmonary DC produce significant levels of IL-6 and fail to produce the Th1-polarizing cytokine IL-12. Importantly, we demonstrate that IL-6 negatively regulates IL-12 production, as pulmonary DC from IL-6(-/-) mice produce significant levels of IL-12 and induce Th1 polarization of naive CD4(+) T cells. Furthermore, we demonstrate that IL-6 is sufficient to explain the differential polarizing abilities of pulmonary and splenic DC, as splenic DC cocultures supplemented with IL-6 polarize naive T cells toward Th2, and pulmonary DC cultures in which IL-6 was removed with neutralizing Ab resulted in more Th1 polarization, pointing to IL-6 as the mechanism of Th2 polarization in the lung. We propose that the Th2 response seen in the lung is due to DC-mediated inhibition of Th1 responses via IL-6 production, rather than enhanced Th2 responses, and that this regulation decreases the likelihood of chronic inflammatory pathology in the lung.  相似文献   

12.
Mouse mammary tumor virus (MMTV) is a milk-borne retrovirus that exploits the adaptive immune system. It has recently been shown that MMTV activates B cells via Toll-like receptor 4 (TLR4), a molecule involved in innate immune responses. Here, we show that direct virus binding to TLR4 induced maturation of bone marrow-derived dendritic cells and up-regulated expression of the MMTV entry receptor (CD71) on these cells. In vivo, MMTV increased the number of dendritic cells in neonatal Peyer's patches and their expression of CD71; both these effects were dependent on TLR4. Thus, retroviral signaling through TLRs plays a critical role in dendritic-cell participation during infection.  相似文献   

13.
14.
Although initial reports linked the costimulatory molecule ICOS preferentially with the development of Th2 cells, there is evidence that it is not required for protective type 2 immunity to helminths and that it contributes to Th1 and Th2 responses to other parasites. To address the role of ICOS in the development of infection-induced polarized Th cells, ICOS(-/-) mice were infected with Trichuris muris or Toxoplasma gondii. Wild-type mice challenged with T. muris developed Th2 responses and expelled these helminths by day 18 postinfection, whereas ICOS(-/-) mice failed to clear worms and produced reduced levels of type 2 cytokines. However, by day 35 postinfection, ICOS(-/-) mice were able to mount an effective Th2 response and worms were expelled. This delay in protective immunity was associated with a defect in infection-induced increases in the number of activated and proliferating CD4+ T cells. Similarly, following challenge with T. gondii ICOS was required for optimal proliferation by CD4+ T cells. However, the reduced number of activated CD4+ T cells and associated defect in the production of IFN-gamma did not result in increased susceptibility to T. gondii, but rather resulted in decreased CNS pathology during the chronic phase of this infection. Taken together, these data are consistent with a model in which ICOS is not involved in dictating polarity of the Th response but rather regulates the expansion of these subsets.  相似文献   

15.
He L  Li H  Chen L  Miao J  Jiang Y  Zhang Y  Xiao Z  Hanley G  Li Y  Zhang X  LeSage G  Peng Y  Yin D 《PloS one》2011,6(4):e18190
Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6), the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or μ-opioid receptor (μOR) deficient primary microglia, suggesting an involvement of MAPK and μOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require μOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and μOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of μOR is capable of preventing opioid-induced brain damage.  相似文献   

16.
The dendritic cell (DC) targeting/activation patterns required to elicit Th1/Th17 responses remain undefined. One postulated requirement was that of a physical linkage between Ags and immunomodulators. Accordingly, the separate same-site administration of Ag85B-ESAT-6 (hybrid-1 protein; H1), a mycobacterial fusion Ag, and the CAF01 liposome-based adjuvant induced similar Ab and weak Th2 responses as those of coformulated H1/CAF01 but failed to elicit Th1/Th17 responses. Yet, this separate same-site injection generated the same type and number of activated Ag(+)/adjuvant(+) DCs in the draining lymph nodes (LN) as that of protective H1/CAF01 immunization. Thus, targeting/activating the same DC population by Ag and adjuvant is not sufficient to elicit Th1/Th17 responses. To identify the determinants of Th1/Th17 adjuvanticity, in vivo tracking experiments using fluorescently labeled Ag and adjuvant identified that a separate same-site administration elicits an additional early Ag(+)/adjuvant(-) DC population with a nonactivated phenotype, resulting from the earlier targeting of LN DCs by H1 than by CAF01 molecules. This asynchronous targeting pattern was mimicked by the injection of free H1 prior to or with, but not after, H1/CAF01 or H1/CpG/ aluminum hydroxide immunization. The injection of soluble OVA similarly prevented the induction of Th1 responses by OVA/CAF01. Using adoptively transferred OT-2 cells, we show that the Ag targeting of LN DCs prior to their activation generates nonactivated Ag-pulsed DCs that recruit Ag-specific T cells, trigger their initial proliferation, but interfere with Th1 induction in a dose-dependent manner. Thus, the synchronization of DC targeting and activation is a critical determinant for Th1/Th17 adjuvanticity.  相似文献   

17.
18.
Osteopontin (OPN) has been defined as a key cytokine promoting the release of IL-12 and hence inducing the development of protective cell-mediated immunity to viruses and intracellular pathogens. To further characterize the role of OPN in antiviral immunity, OPN-deficient (OPN-/-) mice were analyzed after infection with influenza virus and vaccinia virus. Surprisingly, we found that viral clearance, lung inflammation, and recruitment of effector T cells to the lung were unaffected in OPN-/- mice after influenza infection. Furthermore, effector status of T cells was normal as demonstrated by normal IFN-gamma production and CTL lytic activity. Moreover, activation and Th1 differentiation of naive TCR transgenic CD4+ T cells by dendritic cells and cognate Ag was normal in the absence of OPN in vitro. Contrary to a previous report, we found that OPN-/- mice mounted a normal immune response to Listeria monocytogenes. In conclusion, OPN is dispensable for antiviral immune responses against influenza virus and vaccinia virus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号