首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the effect of D-glucose on the β-cell Na+/K+ pump, 86Rb+ influx was studied in isolated, -cell-rich islets of Umeå-ob/ob mice in the absence or presence of lmM ouabain. D-glucose (20 mM) stimulated the ouabain-sensitive portion of 86Rb+ influx by 65%, whereas the ouabain-resistant portion was inhibited by 48%. The Na+/K+ ATPase activity in homogenates of islets of Umeå-ob/ob mice or normal mice was determined to search for direct effects of D-glucose. Thus, ouabain-sensitive ATP hydrolysis in islet homogenates was measured in the presence of different D-glucose concentrations. No effect of D-glucose (3–20 mM) was observed in either ob/ob or normal islets at the optimal Na+/K+ ratio for the enzyme (135 mM Na+ and 20 mM K+). Neither D-glucose (3–20 mM) nor L-glucose or 3-O-methyl-D-glucose (20 mM) affected the enzyme activity at a high Na+/K+ ratio (175 mM Na+ and 0.7mM K+). Diphenylhydantoin (150 μM) decreased the enzyme activity at optimal Na+/K+ ratio, whereas 50 μM of the drug had no effect. The results suggest that D-glucose induces a net stimulation the Na+/K+ pump of β-cells in intact islets and that D-glucose does not exert any direct effect on the Na+/K+ ATPase activity.  相似文献   

2.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

3.
Summary Biochemical properties of cytoplasmic and mitochondrial isozymes of isocitrate dehydrogenase from DBA/2J mice were compared under various experimental conditions. These included Km determinations, coenzyme specificity, pH dependence, urea, iodoacetate and thermal inactivation and fluorescence titration studies. From these comparative studies each isozyme was found to have distinct coenzyme specificity, thermal stability and sensitivity to alkylation. In the case of the cytoplasmic isozyme, both NADP+ and isocitrate protect the enzyme against thermal denaturation but not iodoacetate inactivation. On the contrary, neither NADP+ nor isocitrate protects the mitochondrial enzyme against thermal or iodoacetate inactivation. Both isozymes exhibit similar fluorescence properties. NADP+ and NADPH, but not isocitrate, cause quenching of protein fluorescence. Enhancement of coenzyme fluorescence and protein energy transfer was observed when either isozyme was added to NADPH solutions. Further addition of isocitrate or isocitrate-Mg++ to a NADPH-enzyme solution caused a decrease of the enhancement of coenzyme fluorescence and protein energy transfer, but not quenching of protein fluorescence, indicating the formation of a ternary complex. This observation precludes the mechanism of mutual exclusion between NADPH and isocitrate in the active site of the enzyme.Abbreviations used IDH isocitrate dehydrogenase - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - TNADP+ thionicotinamide-adenine dinucoleotide phosphate - AcPyADP+ 3-acetylpyridine-adenine dinucleotide phosphate NIH Visiting Fellow.  相似文献   

4.
L G Foe  J L Trujillo 《Life sciences》1979,25(17):1529-1538
The monovalent cations NH4+, K+, and Rb+ activate pig liver phosphofructokinase by increasing the maximal velocity. In the presence of these cations the enzyme retains sigmoid kinetics with respect to fructose-6-phosphate. However, these cations bring about a decrease in the [S]0.5 for fructose-6-phosphate to an extent directly proportional to their ionic volumes. The apparent dissociation constants of NH4+, K+, and Rb+ for the enzyme at 0.5 mM ATP and 4 mM Fru6P are 0.2 mM, 8 mM, and 15 mM, respectively. The maximal velocity of the enzyme in the presence of saturating concentrations of Rb+ is about 70% of that seen with NH4+ or K+. The monovalent cations Li+, Na+, and Cs+ inhibit the enzyme at high concentrations (> 50 mM) by decreasing the maximal velocity. Although the efficiency of inhibition by these cations qualitatively increases with decreasing size, there is no obvious quantitative relationship between efficiency of inhibition and any parameter of ionic size.  相似文献   

5.
In the negative EOG-generating process a cation which can substitute for Na+ was sought among the monovalent ions, Li+, Rb+, Cs+, NH4+, and TEA+, the divalent ions, Mg++, Ca++, Sr++, Ba++, Zn++, Cd++, Mn++, Co++, and Ni++, and the trivalent ions, Al+++ and Fe+++. In Ringer solutions in which Na+ was replaced by one of these cations the negative EOG's decreased in amplitude and could not maintain the original amplitudes. In K+-Ringer solution in which Na+ was replaced by K+, the negative EOG's reversed their polarity. Recovery of these reversed potentials was examined in modified Ringer solutions in which Na+ was replaced by one of the above cations. Complete recovery was found only in the normal Ringer solution. Thus, it was clarified that Na+ plays an irreplaceable role in the generation of the negative EOG's. The sieve hypothesis which was valid for the positive EOG-generating membrane or IPSP was not found applicable in any form to the negative EOG-generating membrane. The reversal of the negative EOG's found in K+- , Rb+- , and Ba++-Ringer solutions was attributed to the exit of the internal K+. It is, however, not known whether or not Cl- permeability increases in these Na+-free solutions and contributes to the generation of the reversed EOG's.  相似文献   

6.
Summary When the mulletMugil capito is transferred to medium lacking Ca++ (either Ca++-free seawater or distilled water) the passive permeability of the gill to Na+ and Cl is increased and the activating effect of external K+ on the Na+ and Cl effluxes in hyposaline media is inhibited. The permeability of the gill increases progressively in proportion to the time of Ca++ deprivation; it declines when Ca++ is added again to the external medium. The active mechanisms for ion excretion are not reversible. At external Ca++ concentrations from 0.1 to 10 mM the Na+ permeability is constant but the activation of Na+ efflux by K+ shows a maximum at a Ca++ concentration of about 1 mM. For activation of Cl efflux external bicarbonate must be present, in addition to Ca++, suggesting the existence of a Cl/HCO 3 exchange. The mechanism by which Ca++ controls the passive branchial permeability is thus probably different from that involved in K+ activation of ion excretion. The Ca++ effect on the K+ sensitive ionic excretory mechanisms seems to be related to intracellular Ca++ movements. Thus, on the one hand, substances such as Ruthenium Red and La+++ which both inhibit Ca++ exchange, in media containing Ca++ and HCO 3 also inhibit K+ activation of Na+ and Cl effluxes; on the other hand, the ionophore A 23187, a stimulator of Ca++ exchange, when added to these media, activates the Na+ and Cl effluxes; its maximal effect on the Na+ flux occurs at 2 mM Ca++.Abbreviations ASW-Ca artificial seawater minus calcium - DW deionised water - DWCa deionised water with 1 mM Ca++ added - DWCaHCO 3 DW with calcium plus bicarbonate - DWHCO 3 DW with 1 mM sodium bicarbonate added - FW freshwater (tap water) - FWK freshwater with K+ added - P. D. potential difference - SW seawater The experiments reported in this paper were done with Jean Maetz who tragically died in August 1977. It is the last report about several years of friendly collaboration  相似文献   

7.
Drobner  Ute  Tyler  Germund 《Plant and Soil》1998,201(2):285-293
Earlier studies have demonstrated close inverse relationships between Rb+ concentrations in plants and pH or base (including K+) saturation of soils. This study aims at elucidating conditions in soils influencing plant uptake of Rb+. Growth experiments with Carex pilulifera L. were performed, modifying the acidity and K+ supply of acid soils and solutions. We were unable to assess any reduction in Rb+ uptake by adding precipitated CaCO3 to acid soil unless pH was raised to near neutrality. Though not fully compensating the loss of soil solution K+and exchangeable K+ from uptake by the growing plants, soil treated with 0.5 mM K+ (as KCl) reduced the Rb+ concentration in the shoots by 40% without measurably changing soil pH. Experiments varying the pH and K+ concentration of a nutrient solution (20% Hoagland), spiked with 6 uM Rb+, clearly demonstrated that plant uptake of Rb+ and K+ was unaffected by acidity in the pH range 3.6–5.0 tested, whereas Rb+ uptake was reduced by ca. 50%, when K+ concentration was increased from 1.2 to 3.6 mM. The sensitivity of this reaction indicates that shortage or low availability of K+ controls Rb+ uptake from acid soils, being probably more important than soil acidity per se. Secondary effects of high soil acidity, such as leaching losses of K+, might also be of importance in accounting for the high uptake of Rb+ from such soils. It is suggested that leaf analysis of Rb+ may be used as a method to assess early stages of K+ deficiency in plants on acid soils.  相似文献   

8.
We employed the calcium (Ca++)-sensitive, intracellular dye QUIN-2 to examine the role of cytosolic Ca++ in the stimulation of PTH release by high extracellular potassium (K+) concentrations. Addition of 55 mM KCl to cells incubated with 115 mM NaCl and 5 mM KCl lowered cytosolic Ca++ at either low (0.5 mM) extracellular Ca++ (from 194±14 to 159±9 nM, p<.01, N=6) or high (1.5 mM) extracellular calcium (from 465±38 to 293±20 nM, p<.01, N=10). This reduction in cytosolic Ca++ was due to high K+perse and not to changes in tonicity since addition of 55 mM NaCl was without effect while a similar decrease in cytosolic Ca++ occurred when cells were resuspended in 60 mM NaCl and 60 mM KCl. PTH release was significantly (p<.01) greater at 0.5 and 1.5 mM Ca++ in QUIN-2-loaded cells incubated with 60 mM NaCl and 60 mM KCl than in those exposed to 115 mM NaCl and 5 mM KCl. In contrast to most secretory cells, therefore, stimulation of PTH release by high K+ is associated with a decrease rather than an increase in cytosolic Ca++.  相似文献   

9.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

10.
The influx of Na+, K+, Rb+, and Cs+ into frog sartorius muscle has been followed. The results show that a maximum rate is found for K+, while Na+ and Cs+ penetrate much more slowly. Similar measurements with Ca++, Ba++, and Ra++ show that Ba++ penetrates at a rate somewhat greater than that of either Ca++ or Ra++. All these divalent cations, however, penetrate at rates much slower than do the alkali cations. The results obtained are discussed with reference to a model that has been developed to explain the different penetration rates for the alkali cations.  相似文献   

11.
Changes in the chemical reactivity of the sulfhydryl groups of (Na+ + K+)-dependent ATPase can be indicative of conformational changes induced by activating ions. Cyanylation of these groups by 5 mM 2-nitro-5-thiobenzoic acid caused a partial inhibition of enzymatic activity. Both this loss and the incorporation of radioactive cyanide from the 14C-labeled reagent were reduced by inclusion of 50 mM ATP and 150 mM Na+ in the incubation. When 10 mM Mg++ was added in addition, the inactivation was not different from that produced by cyanylation reagent alone, but the radioactive labeling of protein increased significantly. The data indicate that the sulfhydryl groups of this enzyme exist in two populations, one of which must be free if the enzyme is to function. The other, not essential for enzymatic activity, becomes accessible only when the Na+ and Mg++-dependent phosphorylation of the enzyme alters its conformation. Inactivation of the enzyme by freezing and thawing increases the incorporation of radioactivity but destroys the responsiveness of labeling to cations and ATP.  相似文献   

12.
The activity of malic enzyme fromEscherichia coli was unaffected by the monovalent cations Na+ or Li+ at 10 mM. At 100 mM, Li+ or Na+ inhibited the enzyme activity by 88% and 83%, respectively. However, the enzyme activity was stimulated by 40–80-fold with 10 mM K+, Rb+, Cs+, or NH 4 + . Less stimulation was observed with 100 mM of these stimulating cations. The stimulatory effect was lost after the enzyme was dialyzed against Tris-Cl buffer, but was regained after incubating the dialyzed enzyme with dithiothreitol. The regenerated enzyme was inactivated by 5,5′-dithiobis(2-nitrobenzoic acid). The resulting inactive thionitrobenzoyl enzyme could be regenerated to the active thiol-enzyme by eithiothreitol or converted to the inactive thiocyanoylated enzyme by KCN. The thiocyanoylated enzyme was insensitive to K+ stimulation, which suggested the essentiality of the sulfhydryl groups of theE. coli malic enzyme.  相似文献   

13.
14.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

15.
Bioelectric effects of ions microinjected into the giant axon of Loligo   总被引:1,自引:0,他引:1  
1. A technique is described for recording the bioelectric activity of the squid giant axon during and following alteration of the internal axonal composition with respect to ions or other substances. 2. Experimental evidence indicates that the technique as described is capable of measuring changes in local bioelectric activity with an accuracy of 10 to 15 per cent or higher. 3. Alterations of the internal K+ or Cl- concentrations do not cause the change in resting potential expected on the basis of a Donnan mechanism. 4. The general effect of microinjection of K+ Rb+, Na+, Li+, Ba++, Ca++, Mg++, or Sr++ is to cause decrease in spike amplitude, followed by propagation block. 5. The resting potential decreases when the amplitude of the spike becomes low and block is incipient. 6. The decrease in resting potential and spike amplitude may be confined to the immediate vicinity of the injection. 7. At block, the resting potential decreases up to 50 per cent, but injection of small quantities of divalent cations may cause much larger localized depolarization. 8. The blocking effectiveness of K+, Na+, and Ca++ expressed as reciprocals of the relative amounts needed to cause block is approximately 1:5:100. Rb+ has the same low effectiveness as does K+. Li+ resembles Na+. Ba++ and Mg++ are approximately as effective as Ca++. 9. Microinjection of Na+ may cause marked prolongation of the spike at the injection site as well as decrease in its amplitude. 10. The anions used (Cl-, HCO3-, NO3-, SO4-, aspartate, and glutamate) do not seem to exert specific effects. 11. A tentative explanation is offered for the insensitivity of the resting potential to changes in the axonal ionic composition. 12. New data are presented on the range of variation, in a large sample, of the magnitude of the resting potential and spike amplitude.  相似文献   

16.
Summary As different structural states of the (Na+–K+)-ATPase (EC 3.6.1.3) may lead to a changed reactivity to antibodies, the influence of Na+, K+, Mg++, Pi and ATP on the reaction between highly purified (Na+–K+)-ATPase and antibodies directed against the membrane-bound enzyme was measured. The antigen antibody reaction was registered by measuring the antibody inhibition of (Na+–K+)-ATPase activity.In themembrane-bound but not in thesolubilized enzyme four different degrees of antibody inhibition were obtained at equilibrium of the antigen antibody reaction if different combinations of Na+, K+, Mg++ and ATP were present during the incubation with the antibodies. Corresponding to the different degrees of inhibition, different rates of enzyme inhibition were measured. (a) The smallest degree of enzyme inhibition was obtained when (i) only Mg++, (ii) Mg++ and Na+ or (iii) Mg++ and K+ were present during the antigen antibody reaction. (b) The enzyme activity was inhibited more strongly if Na+, Mg++ and ATP were present together. (c) It was inhibited even more if only (i) Na+, (ii) K+, (iii) ATP or both (iv) ATP and Na+, (v) ATP and K+, (vi) ATP and Mg++, or if (vii) no ATP and activating ions were present. (d) The highest degree of antibody inhibition was obtained if Mg++, ATP and K+ were present together.In the presence of Mg++ plus ADP and in the presence of Mg++ plus the ATP analog adenylyl (--methylene) diphosphonate, Na+ and K+ did not influence the degree of antibody inhibition as they did in the presence of Mg++ plus ATP. It was further found that the degree of antibody inhibition in the presence of Mg++, ATP and K+ was affected by the sequence in which K+ and ATP were added to the enzyme prior to the addition of the antibodies.It is suggested that by antibody inhibition different conformations of the (Na+–K+)-ATPase could be detected. These conformations may possibly not occur in the solubilized enzyme and therefore do not seem to be necessarily linked to the intermediary steps of the ATP hydrolysis of the enzyme. The structural changes which are induced by Na+ and K+ in the presence of Mg++ plus ATP are proposed to occur during the Na+–K+ transport.  相似文献   

17.
The activity of the β-cell Na+/K+ pump was studied by using ouabain-sensitive (lmM ouabain) 86Rb+ influx in β-cell-rich islets of Umeå-ob/ob mice as an indicator of the pump function. The present results show that the stimulatory effect of glucose on ouabain-sensitive 86Rb+ influx reached its approximate maximum at 5mM glucose. Pre-treatment of the islets with 20mM glucose for 60 min strongly reduced the glucose-induced stimulation of the Na+/K+ pump. Pre-treatment (60 or 180 min) of islets at 0mM glucose, on the other hand, did not affect the magnitude of the glucose-induced stimulation of 86Rb+ influx dunng the subsequent 5-min incubation. Glibenclamide stimulated the ouabain-sensitive 86Rb+ uptake in the same manner as glucose. The stimulatory effect, showed its apparent maximum at 0.5μM. Pre-treatment (60 min) of islets with 1μM glibenclamide did not reduce the subsequent stimulation of the ouabain-sensitive 86Rb+ influx. The stimulatory effect of glibenclamide and D-glucose were not .additive, suggesting that they may have the same mechanism of action. No direct effect of glibenclamide (0.01-1μM) was observed on the Na+/K+ ATPase activity in homogenates of islets. Diazoxide (0.4mM) inhibited the Na+/K+ pump. This effect was sustained even after 60 min of pre-treatment of islets with 0.4mM diazoxide. The stimulatory effect of glibenclamide and D-glucose were abolished by diazoxide. It is concluded that nutrient as well as non-nutrient insulin secretagogues activate the Na+/K+ pump, probably as part of the membrane repolarisation process.  相似文献   

18.
The activity of malic enzyme fromEscherichia coli was unaffected by the monovalent cations Na+ or Li+ at 10 mM. At 100 mM, Li+ or Na+ inhibited the enzyme activity by 88% and 83%, respectively. However, the enzyme activity was stimulated by 40–80-fold with 10 mM K+, Rb+, Cs+, or NH 4 + . Less stimulation was observed with 100 mM of these stimulating cations. The stimulatory effect was lost after the enzyme was dialyzed against Tris-Cl buffer, but was regained after incubating the dialyzed enzyme with dithiothreitol. The regenerated enzyme was inactivated by 5,5-dithiobis(2-nitrobenzoic acid). The resulting inactive thionitrobenzoyl enzyme could be regenerated to the active thiol-enzyme by eithiothreitol or converted to the inactive thiocyanoylated enzyme by KCN. The thiocyanoylated enzyme was insensitive to K+ stimulation, which suggested the essentiality of the sulfhydryl groups of theE. coli malic enzyme.  相似文献   

19.
Calcium-dependent activation of tryptophan hydroxylase by ATP and magnesium   总被引:10,自引:0,他引:10  
Tryptophan hydroxylase [EC 1.14.16.4; L-tryptophan, tetrahydropteridine: oxygen oxidoreductase (5-hydroxylating)] in rat brainstem extracts is activated 2 to 2.5-fold by ATP and Mg++ in the presence of subsaturating concentrations of the cofactor 6-methyltetrahydropterin (6MPH4). The activation of tryptophan hydroxylase under these conditions results from a reduction in the apparent Km for 6MPH4 from 0.21 mM to 0.09 mM. The activation requires Mg++ and ATP but is not dependent on either cAMP or cGMP. The effect of ATP and Mg++ on enzyme activity was enhanced by μM concentrations of Ca++ and totally blocked by EGTA. These data suggest that tryptophan hydroxylase can be activated by a cyclic nucleotide independent protein kinase which requires low calcium concentrations for the expression of its activity.  相似文献   

20.
Dextransuccrase (E.C 2.4.1.5) is a key enzyme in S. mutans for the metabolism of sucrose which helps in the adherence and accumulation of bacteria on tooth surface leading to the formation of dental caries. Dextransuccrase resembles in its catalytic properties with the brush boarder sucrase and exhibits pH dependent inhibitory and stimulatory effects in response to Na+. In this communication we studied the effect of monovalent cations on the activity of dextransuccrase from S. mutans. The percentage inhibition of dextransuccrase was 65% at 0.5 mM NaCl which enhanced to 90% at 20 mM sodium concentration. However there was no effect on dextransucrase activity in presence of other monovalent cations (Rb+, Cs+, and K+) tested. Enzyme activity was enhanced 20–24% in acidic pH but was strongly inhibited (59–89%) around neutral and alkaline pH by 0.5–2.0 mM sodium chloride. Upon dialysis, 86% of enzyme activity was restored to control values. There was no effect of 2 mM NaCl on glucosyltransferase activity of the enzyme. Kinetic studies revealed that enzyme showed biphasic effects in response to Na+ ions. At acidic pH the enzyme exhibited mixed type of activation affecting both Vmax and Km, while in alkaline pH, the enzyme showed V- type effect reducing Vmax by 74% without affecting Km. The effects of sodium ions on dextransuccrase activity were specific, thus it can be useful to block its catalytic activity, and reducing the cariogenic potential of S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号