首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution--it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)--it stabilizes associations of protofilaments.  相似文献   

2.
Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZΔC16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF.  相似文献   

3.
In response to a cell cycle signal, the cytoskeletal protein FtsZ assembles into a ring structure that establishes the location of the division site and serves as a framework for assembly of the division machinery. A battery of factors control FtsZ assembly to ensure that the ring forms in the correct position and at the precise time. EzrA, a negative regulator of FtsZ ring formation, is important for ensuring that the ring forms only once per cell cycle and that cytokinesis is restricted to mid-cell. EzrA is distributed throughout the plasma membrane and localizes to the ring in an FtsZ-dependent manner, suggesting that it interacts directly with FtsZ to modulate assembly. We have performed a series of experiments examining the interaction between EzrA and FtsZ. As little as twofold overexpression of EzrA blocks FtsZ ring formation in a sensitized genetic background, consistent with its predicted function. A purified EzrA fusion protein interacts directly with FtsZ to block assembly in vitro. Although EzrA is able to inhibit FtsZ assembly, it is unable to disassemble preformed polymers. These data support a model in which EzrA interacts directly with FtsZ at the plasma membrane to prevent polymerization and aberrant FtsZ ring formation.  相似文献   

4.
There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution—it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)—it stablizes associations of protofilaments.  相似文献   

5.
Cell division of Escherichia coli is inhibited when the SulA protein is induced in response to DNA damage as part of the SOS checkpoint control system. The SulA protein interacts with the tubulin-like FtsZ division protein. We investigated the effects of purified SulA upon FtsZ. SulA protein inhibits the polymerization and the GTPase activity of FtsZ, while point mutant SulA proteins show little effect on either of these FtsZ activities. SulA did not inhibit the polymerization of purified FtsZ2 mutant protein, which was originally isolated as insensitive to SulA. These studies define polymerization assays for FtsZ which respond to an authentic cellular regulator. The observations presented here support the notion that polymerization of FtsZ is central to its cellular role and that direct, reversible inhibition of FtsZ polymerization by SulA may account for division inhibition.  相似文献   

6.
Scheffers DJ 《FEBS letters》2008,582(17):2601-2608
The min system prevents polar cell division in bacteria. Here, the biochemical characterization of the interaction of MinC and FtsZ from a Gram-positive bacterium, Bacillus subtilis, is reported. B. subtilis MinC inhibits FtsZ polymerization in a pH-dependent manner by preventing the formation of lateral associations between filaments. The inhibitory effect of MinC on FtsZ polymerization is counteracted by the presence of ZapA, a protein that promotes FtsZ filament bundling.  相似文献   

7.
FtsZ is a tubulin homolog essential for prokaryotic cell division. In living bacteria, FtsZ forms a ringlike structure (Z-ring) at the cell midpoint. Cell division coincides with a gradual contraction of the Z-ring, although the detailed molecular structure of the Z-ring is unknown. To reveal the structural properties of FtsZ, an understanding of FtsZ filament and bundle formation is needed. We develop a kinetic model that describes the polymerization and bundling mechanism of FtsZ filaments. The model reveals the energetics of the FtsZ filament formation and the bundling energy between filaments. A weak lateral interaction between filaments is predicted by the model. The model is able to fit the in vitro polymerization kinetics data of another researcher, and explains the cooperativity observed in FtsZ kinetics and the critical concentration in different buffer media. The developed model is also applicable for understanding the kinetics and energetics of other bundling biopolymer filaments.  相似文献   

8.
The emergence of bacterial resistance to antibiotics is a major health problem and, therefore, it is critical to develop new antibiotics with novel modes of action. FtsZ, a tubulin-like GTPase, plays an essential role in bacterial cell division, and its homologs are present in almost all eubacteria and archaea. During cell division, FtsZ forms polymers in the presence of GTP that recruit other division proteins to make the cell division apparatus. Therefore, inhibition of FtsZ polymerization will prevent cells from dividing, leading to cell death. Using a fluorescent FtsZ polymerization assay, the screening of >100,000 extracts of microbial fermentation broths and plants followed by fractionation led to the identification of viriditoxin, which blocked FtsZ polymerization with an IC50 of 8.2 microg/ml and concomitant GTPase inhibition with an IC50 of 7.0 microg/ml. That the mode of antibacterial action of viriditoxin is via inhibition of FtsZ was confirmed by the observation of its effects on cell morphology, macromolecular synthesis, DNA-damage response, and increased minimum inhibitory concentration as a result of an increase in the expression of the FtsZ protein. Viriditoxin exhibited broad-spectrum antibacterial activity against clinically relevant Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci, without affecting the viability of eukaryotic cells.  相似文献   

9.
Thanbichler M  Shapiro L 《Cell》2006,126(1):147-162
Correct positioning of the division plane is a prerequisite for the generation of daughter cells with a normal chromosome complement. Here, we present a mechanism that coordinates assembly and placement of the FtsZ cytokinetic ring with bipolar localization of the newly duplicated chromosomal origins in Caulobacter. After replication of the polarly located origin region, one copy moves rapidly to the opposite end of the cell in an MreB-dependent manner. A previously uncharacterized essential protein, MipZ, forms a complex with the partitioning protein ParB near the origin of replication and localizes with the duplicated origin regions to the cell poles. MipZ directly interferes with FtsZ polymerization, thereby restricting FtsZ ring formation to midcell, the region of lowest MipZ concentration. The cellular localization of MipZ thus serves the dual function of positioning the FtsZ ring and delaying formation of the cell division apparatus until chromosome segregation has initiated.  相似文献   

10.
During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively studied in vitro using basic methods including light scattering, sedimentation, GTP hydrolysis assays and electron microscopy. Buffer conditions influence both the polymerization properties of FtsZ, and the ability of FtsZ to interact with regulatory proteins. Here, we describe protocols for FtsZ polymerization studies and validate conditions and controls using Escherichia coli and Bacillus subtilis FtsZ as model proteins. A low speed sedimentation assay is introduced that allows the study of the interaction of FtsZ with proteins that bundle or tubulate FtsZ polymers. An improved GTPase assay protocol is described that allows testing of GTP hydrolysis over time using various conditions in a 96-well plate setup, with standardized incubation times that abolish variation in color development in the phosphate detection reaction. The preparation of samples for light scattering studies and electron microscopy is described. Several buffers are used to establish suitable buffer pH and salt concentration for FtsZ polymerization studies. A high concentration of KCl is the best for most of the experiments. Our methods provide a starting point for the in vitro characterization of FtsZ, not only from E. coli and B. subtilis but from any other bacterium. As such, the methods can be used for studies of the interaction of FtsZ with regulatory proteins or the testing of antibacterial drugs which may affect FtsZ polymerization.  相似文献   

11.
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.  相似文献   

12.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

13.
FtsZ, a homolog of eukaryotic tubulin, is involved in the process of cell division, particularly in septum formation in bacteria. The primary amino acid sequences of this protein are fairly conserved in prokaryotes. We observed that a eukaryotic-type Ser/Thr protein kinase, PknA from Mycobacterium tuberculosis, when expressed in Escherichia coli exhibited cell elongation due to a defect in septum formation. We found that FtsZ either from Escherichia coli (eFtsZ) or from M. tuberculosis (mFtsZ) was phosphorylated on co-expression with PknA. Consistent with these observations, solid phase binding and in vitro kinase assays revealed the ability of PknA to interact with mFtsZ protein and also to phosphorylate it. We, therefore, ascertained mFtsZ as a substrate of PknA. Furthermore, the phosphorylated mFtsZ exhibited impairment in its GTP hydrolysis and polymerization abilities. Thus, our results highlighted the ability of PknA to phosphorylate as well as to regulate the functionality of FtsZ, the protein central to cell division throughout the bacterial lineage.  相似文献   

14.
The cell division protein FtsZ is a GTPase structurally related to tubulin and, like tubulin, it assembles in vitro into filaments, sheets and other structures. To study the roles that GTP binding and hydrolysis play in the dynamics of FtsZ polymerization, the nucleotide contents of FtsZ were measured under different polymerizing conditions using a nitrocellulose filter-binding assay, whereas polymerization of the protein was followed in parallel by light scattering. Unpolymerized FtsZ bound 1 mol of GTP mol(-1) protein monomer. At pH 7.5 and in the presence of Mg(2+) and K(+), there was a strong GTPase activity; most of the bound nucleotide was GTP during the first few minutes but, later, the amount of GTP decreased in parallel with depolymerization, whereas the total nucleotide contents remained invariant. These results show that the long FtsZ polymers formed in solution contain mostly GTP. Incorporation of nucleotides into the protein was very fast either when the label was introduced at the onset of the reaction or subsequently during polymerization. Molecular modelling of an FtsZ dimer showed the presence of a cleft between the two subunits maintaining the nucleotide binding site open to the medium. These results show that the FtsZ polymers are highly dynamic structures that quickly exchange the bound nucleotide, and this exchange can occur in all the subunits.  相似文献   

15.
We present here a fluorescence anisotropy method for the quantification of the polymerization of FtsZ, an essential protein for cytokinesis in prokaryotes whose GTP-dependent assembly initiates the formation of the divisome complex. Using Alexa 488 labeled wild-type FtsZ as a tracer, the assay allows determination of the critical concentration of FtsZ polymerization from the dependence of the measured steady-state fluorescence anisotropy on the concentration of FtsZ. The incorporation of the labeled protein into FtsZ polymers and the lack of spectral changes on assembly were independently confirmed by time-resolved fluorescence and fluorescence correlation spectroscopy. Critical concentration values determined by this new assay are compatible with those reported previously under the same conditions by other well-established methods. As a proof of principle, data on the sensitivity of the assay to changes in FtsZ assembly in response to Mg2+ concentration or to the presence of high concentrations of Ficoll 70 as crowding agent are shown. The proposed method is sensitive, low sample consuming, rapid, and reliable, and it can be extended to other cooperatively polymerizing systems. In addition, it can help to discover new antimicrobials that may interfere with FtsZ polymerization because it can be easily adapted to systematic screening assays.  相似文献   

16.
van den Ent F  Löwe J 《The EMBO journal》2000,19(20):5300-5307
Bacterial cell division requires formation of a septal ring. A key step in septum formation is polymerization of FtsZ. FtsA directly interacts with FtsZ and probably targets other proteins to the septum. We have solved the crystal structure of FtsA from Thermotoga maritima in the apo and ATP-bound form. FtsA consists of two domains with the nucleotide-binding site in the interdomain cleft. Both domains have a common core that is also found in the actin family of proteins. Structurally, FtsA is most homologous to actin and heat-shock cognate protein (Hsc70). An important difference between FtsA and the actin family of proteins is the insertion of a subdomain in FtsA. Movement of this subdomain partially encloses a groove, which could bind the C-terminus of FtsZ. FtsZ is the bacterial homologue of tubulin, and the FtsZ ring is functionally similar to the contractile ring in dividing eukaryotic cells. Elucidation of the crystal structure of FtsA shows that another bacterial protein involved in cytokinesis is structurally related to a eukaryotic cytoskeletal protein involved in cytokinesis.  相似文献   

17.
FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.  相似文献   

18.
The essential cell division protein, FtsZ, from Mycobacterium tuberculosis has been expressed in Escherichia coli and purified. The recombinant protein has GTPase activity typical of tubulin and other FtsZs. FtsZ polymerization was studied using 90 degrees light scattering. The mycobacterial protein reaches maximum polymerization much more slowly ( approximately 10 min) than E. coli FtsZ. Depolymerization also occurs slowly, taking 1 h or longer under most conditions. Polymerization requires both Mg(2+) and GTP. The minimum concentration of FtsZ needed for polymerization is 3 microM. Electron microscopy shows that polymerized M. tuberculosis FtsZ consists of strands that associate to form ordered aggregates of parallel protofilaments. Ethyl 6-amino-2, 3-dihydro-4-phenyl-1H-pyrido[4,3-b][1,4]diazepin-8-ylcarbamate+ ++ (SRI 7614), an inhibitor of tubulin polymerization synthesized at Southern Research Institute, inhibits M. tuberculosis FtsZ polymerization, inhibits GTP hydrolysis, and reduces the number and sizes of FtsZ polymers.  相似文献   

19.
The cell division protein FtsZ is composed of three regions based on sequence similarity: a highly conserved N-terminal region of ≈320 amino acids; a variable spacer region; and a conserved C-terminal region of eight amino acids. We show that FtsZ mutants missing different C-terminal fragments have dominant lethal effects because they block cell division in Caulobacter crescentus by two different mechanisms. Removal of the C-terminal conserved region, the linker, and 40 amino acids from the end of the N-terminal conserved region (FtsZΔC281) prevents the localization or the polymerization of FtsZ. Because two-hybrid analysis indicates that FtsZΔC281 does not interact with FtsZ, we hypothesize that FtsZΔC281 blocks cell division by competing with a factor required for FtsZ localization or that it titrates a factor required for the stability of the FtsZ ring. The removal of 24 amino acids from the C-terminus of FtsZ (FtsZΔC485) causes a punctate pattern of FtsZ localization and affects its interaction with FtsA. This suggests that the conserved C-terminal region of FtsZ is required for proper polymerization of FtsZ in Caulobacter and for its interaction with FtsA.  相似文献   

20.
The prokaryotic tubulin homologue FtsZ plays a key role in bacterial cell division. Selective inhibitors of the GTP-dependent polymerization of FtsZ are expected to result in a new class of antibacterial agents. One of the challenges is to identify compounds which do not affect the function of tubulin and various other GTPases in eukaryotic cells. We have designed a novel inhibitor of FtsZ polymerization based on the structure of the natural substrate GTP. The inhibitory activity of 8-bromoguanosine 5'-triphosphate (BrGTP) was characterized by a coupled assay, which allows simultaneous detection of the extent of polymerization (via light scattering) and GTPase activity (via release of inorganic phosphate). We found that BrGTP acts as a competitive inhibitor of both FtsZ polymerization and GTPase activity with a Ki for GTPase activity of 31.8 +/- 4.1 microM. The observation that BrGTP seems not to inhibit tubulin assembly suggests a structural difference of the GTP-binding pockets of FtsZ and tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号