首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Phytohemagglutinin (PHA) produced morphological and functional alterations in a clonal strain of rat pituitary tumor cells (GH4C1). Addition of PHA (2–5 μg/ml) results in a decrease in the proportion of elongated cells from 20% in control cell cultures to less than 10% in the presence of PHA. This effect can be observed after exposure of cells to PHA for 2–3 h and requires 4 days to be reversed after removing PHA from the culture medium. A specialized cell function, the production of the peptide hormone prolactin (PRL), is also affected by PHA treatment. Exposure of cells to 2 μg/ml PHA results in greater than 50% inhibition of PRL production. The above effects of PHA occur without any apparent alteration in total protein per culture dish, the rate of protein synthesis or the overall growth characteristics of the cells.  相似文献   

2.
The effect of -alany-L-histidinato zinc (AHZ) on bone cell function was investigated in osteoblastic MC3T3-E1 cells. Cells were cultured for 3 days at 37°C in a CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus AHZ (10–7–10–5 M) or other reagents, and the cells were cultured further for appropriate periods of time. The presence of AHZ (10–7–10–5 M) produced a remarkable increase of alkaline phosphatase activity and protein concentration in osteoblastic cells. Thus increases were seen with the prolonged cultivation (12–21 days). With the culture of 1, 3 and 12 days, the effect of AHZ (10–6 M) to increase alkaline phosphatase activity and protein concentration was more intensive than the effect of zinc sulfate, (10–6 M). The AHZ effects were completely abolished by the presence of cycloheximide (10–6 M), indicating that AHZ stimulates protein synthesis in the cells. The present study suggests that AHZ has a stimulatory effect on cell differentiation, and that this effect is partly involved on protein synthesis in osteoblastic cells.  相似文献   

3.
We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.  相似文献   

4.
The influence of growth rate and medium composition on exopolymer production byRhizobium leguminosarum was studied. When grown in medium containing 10g/l mannitol and 1g/l glutamic acid,Rhizobium leguminosarum biovartrifolii TA-1 synthesized up to 2.0g/l of extracellular polysaccharide (EPS), and up to 1.6g/l of capsular polysaccharide (CPS). Under non-growing cell conditions in medium without glutamic acid, CPS synthesis by strain TA-1 could proceed to 2.1g/l, while EPS-production remained relatively low (0.8g/l). Maximal CPS-yield was 2.9g CPS/l medium in a medium containing 20g/l mannitol and 2g/l glutamic acid. TheEPS-deficient strain R. leguminosarum RBL5515,exo4::Tn5 was able to produce CPS to similar levels as strain TA-1, but CPS-recovery was easier because of the low viscosity of the medium and growth of the cells in pellets. With strain TA-1 in nitrogen-limited continuous cultures with a constant biomass of 500mg cell protein/l, EPS was the most abundant polysaccharide present at every dilution rate D (between 0.12 and 0.02 h–1). The production rates were 50–100mg/g protein/h for EPS and 15–20mg/g protein/h for CPS. Only low amounts of cyclic -(1,2)-glucans were excreted (10–30 mg/l) over the entire range of growth rates.Abbreviations bv biovar - CPS capsular polysaccharide - EPS extracellular polysaccharide - HMr high molecular mass - LMr low molecular mass - YEMCR Yeast Extract-Mannitol-Congo Red agar  相似文献   

5.
Summary L cells were grown in spinner cultures in a defined medium consisting of Waymouth medium MB752/1 (19) supplemented with 2 mg of fatty acid-free bovine serum albumin (BSA) per ml and 5 μg of oleate per ml (WO5 medium). Growth in WO5 medium was comparable to spinner L cell growth in two serum-containing media. The optimal concentration of oleate in the WO medium was 5 to 10 μg per ml. The use of 20 to 80 μg of oleate per ml of medium resulted in lower peak populations and earlier declines in viable cell counts. Cell death occurred rapidly in WO160 medium. Cell growth in WO medium containing 5 to 80 μg of oleate per ml was well above the level of growth observed when no oleate was present in the medium. Since the total lipid and fatty acid compositions of the BSA used in this study have been characterized by the authors, the WO medium may be considered a defined medium. L cells have been continuously maintained in spinner cultures in WO5 medium for over 50 passages with no major variation in the growth pattern. A 1000-fold increase inChlamydia psittaci strain meningopneumonitis, with a peak titer of 9.3×107 plaque-forming units per ml, was observed when the chlamydial agents were grown in spinner L cells in WO5 medium. This investigation was supported by Public Health Service Research Grant HE 08214 from the Program Projects Branch, Extramural Programs, National Heart and Lung Institute; The World Health Organization; and The Hormel Foundation.  相似文献   

6.
Acetylcholinesterase (AChE) in the clonal NG108-15 cell line has been previously characterized. This cell line represents an in vitro system to study AChE regulation and effects of chemical compounds that may alter AChE activity. Recently, glycyl-L-glutamine (GLG) was demonstrated to function as a neurotrophic factor for maintenance of AChE content in cat denervated superior cervical ganglion cells. In the present study, regeneration of AChE activity in cultures of undifferentiated NG108-15 cells after soman inhibition was investigated in the presence and absence of GLG. Cells were treated with soman (5.5 × 10–6 M) for 15 min and then washed to remove excess soman. Culture medium containing either GLG (10–6, 10–5, or 10–4M) or glycyl-L-glutamic acid (10–6 M) was added to cultures after soman treatment and remained in the medium until cell harvest. Cells were physically detached at various times after soman treatment and specific AChE activity was determined. After soman, AChE activity dramatically decreased to less than 1% of untreated cellular activity at 1 hr. AChE activity gradully increased after 5 hr, while untreated cell AChE activity was regained 20 hr after soman. The t1/2 for AChE regeneration was approximately 10 hr. GLG did not increase the rate of AChE regeneration after soman inhibition. These results indicate that GLG is not a directly acting neurotrophic factor for AChE synthesis in NG108-15 cells after chemical AChE inactivation.Abbreviations AChE acetylcholinesterase - NG108-15 cell neuroblastoma-glioma 108-15 cell - DMEM Dulbecco's modified Eagles minimal essential medium - FBS fetal bovine serum - GLGA glycyl-L-glutamic acid - L-GA L-glutamic acid - GLG glycyl-L-glutamine - GD soman The opinions or assertions contained herein are the private views of the authors and are not to be construed as reflecting the view of the Department of the Army or the Department of the Army or the Department of Defense.  相似文献   

7.
Keen MJ  Rapson NT 《Cytotechnology》1995,17(3):153-163
A serum-free medium, WCM5, has been developed for the large scale propagation of CHO (Chinese hamster ovary) cells which express recombinant protein using dihydrofolate reductase as a selectable marker. WCM5 was prepared by supplementing Iscoves medium without lecithin, albumin or transferrin with a number of components which were shown to benefit growth. WCM5 medium contained 5 mg l–1 human recombinant insulin (Nucellin) but was otherwise protein-free. CHO 3D11* cells which had been engineered to express a humanised antibody, CAMPATH*-1H, were routinely grown using serum-containing medium. From a seeding density of 105 cells ml–1, cells grown in static culture with serum reached a maximal cell density of 6.5×105 cells ml–1 after 6 days in culture and produced a maximal antibody concentration of 69 mg l–1 after 11 days in culture. CHO 3D11* cells grown with serum were washed in serum-free medium then cultured in WCM5 medium. Following a period of adaptation the cell growth and product yield was superior to that achieved with serum-containing medium. CHO cells producing CAMPATH-1H grown in an 8000 l stirred bioreactor seeded with 2×105 cells ml–1 reached a maximal viable cell density of 2.16×106 cells ml–1 after 108 h in culture and a maximal antibody concentration of 131.1 mg l–1 after 122 h in culture.Abbreviations CHO Chinese hamster ovary - dhfr dihydrofolate reductase - dhfr dihydrofolate reductase deficient - MTX methotrexate - H hypoxanthine - T thymidine - T/V trypsin versene - F12 Hams F12 medium - NEAA non essential amino acids  相似文献   

8.
The hallmark of differentiated mammary epithelial cells is a copious secretion of milk-specific components regulated by lactogenic hormones. We describe an established clonal cell line produced from primary bovine mammary alveolar cells (MAC-T) by stable transfection with SV-40 large T-antigen. MAC-T cells show a population doubling time of approximately 17 h and have been cultured more than 350 passages without showing any sign of senescence. They show the characteristic “cobblestone” morphology of epithelial cells when grown on plastic substratum. Differentiation was induced by augmenting cell-cell interaction on a floating collagen gel in the presence of prolactin. The differentiated phenotype was characterized to include (1) increased abundance in β-casein mRNA, (2) increased number and size of indirect immunofluorescent casein secretory vesicles in each cell and (3) αs- and β-casein protein secretion. The clonal nature of the cells, their immortality, and their ability to uniformly differentiate and secrete casein proteins make this cell line unique.  相似文献   

9.
We have established primary colonic epithelial cell culture from adult rabbits and examined effects of anti-inflammatory drugs on prostaglandin (PG) E2 production. Colonic epithelium of adult rabbits was scraped and minced into small pieces. They were incubated for isolation in Hanks' balanced salt solution with 0.35 % collagenase and Earle's solution with 1 mM EDTA. Isolated cells were cultured in Coon's modified Ham's F-12 medium with 10 % fetal bovine serum and antibiotics on collagen coated cell wells. The medium was refed twice a week. The production of PGs was assessed by high pressure liquid chromatography (HPLC). PGE2 and PGF were measured by radioimmunoassay. Within 24 hours after inoculation, the cell clumps attached to the surface of the wells and cells began to spread out and grow. Monolayer cultures became confluent in 4 days. Phase contrast microscopy showed that these cells consisted of a homogeneous population of epithelial cells with large oval nuclei, polyhedral shape, and organized sheet-like growth pattern. HPLC profile showed synthesis of 6-keto-PGF, thromboxane B2, PGF, PGE2, and PGD2 by cultured cells. Quantitatively, 117±7 ng/mg-protein/hour PGE2 by 7.4±0.7 ng/mg-protein/hour PGF were produced. While hydrocortisone (10−4-10−2 M) did not show a significant effect on PGE2 production, indomethacin (10−8-10−6 M), and 5-aminosalicylic acid (2×10−4-5×10−3 M) inhibited PGE2 production. We have established relatively convenient procedure for primary culture of colonic epithelial cells from adult rabbits. Different actions of anti-inflammatory drugs on PGE2 synthesis suggest that these cultured cells might be a good tool for the various cellular functional studies of normal colonic epithelial cells.  相似文献   

10.
The effect of -alanyl-L-histidinato zinc (AHZ) on protein components in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 3 days at 37°C in CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further 3 or 6 days. The homgenate of cells was analyzed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The presence of AHZ (10–7 to 10–5 M) caused an appreciable increase of many protein components in cells. Especially, the 67 killo-dalton (kDa) and 44 kDa proteins which are the major components from control cells were clearly increased by the presence of AHZ. Furthermore, the concentrations of osteocalcin, insulin-like growth factor-I and transforming growth factor- in the culture medium secreted from osteoblastic cells were markedly increased by the presence of AHZ (10–6 and 10–5 M). The effect of AHZ was a greater than that of zinc sulfate (10–6 and 10–5 M). The present findings suggest that AHZ can increase many proteins which are involved in the stimulation of bone formation and cell proliferation in osteoblastic cells.  相似文献   

11.
Keen MJ  Steward TW 《Cytotechnology》1995,17(3):203-211
NS0 has been used as a fusion partner for the production of hybridomas and has more recently been engineered to produce recombinant protein. A protein-free culture medium, designated W38 medium, has previously been developed which supported high density growth of rat myeloma and hybridoma cell lines. NS0 cells failed to grow in W38 medium and in a number of protein-free culture media which support the growth of other myeloma cell lines. NS0 cells are derived from the NS-1 cell line, which is known to require exogencus cholesterol. It was found that NS0 cells grew in W38 medium supplemented with phosphatidylcholine, cholesterol, and albumin and that NS0 were auxotrophic for cholesterol. Protein-free growth of NS0 cells was achieved by using -cyclodextrin to replace albumin as a lipid carrier. The maximal cell density reached in this protein-free medium was in excess of 1.5×106 cell ml–1. The lipid supplements in the medium precipitated after a few days storage at +4°C. In order to overcome this problem a protocol was developed which allowed NS0 cells to be adapted to cholesterol-independent growth in W38 medium. NS0.CF (cholesterol-independent NS0 cells) were cultured continuously in W38 medium for several months. In shake flask culture a cell density of 2.4×106 cells ml–1 was achieved in W38 medium compared with 1.41×106 cells ml–1 in RPMI 1640 medium containing 10% foetal bovine serum. NS0.CF cells readily grew in a 1 litre stirred bioreactor using W38 medium supplemented with Pluronic F68 reaching a density of 3.24×106 cells ml–1. NS0.CF were cloned protein-free by limiting dilution in W38 medium, giving colonies in wells that were seeded at an average density of 0.32 cells per 200 l. This study has demonstrated for the first time the growth of a cholesterol-requiring mouse myeloma cell line in a completely defined protein-free medium and its subsequent adaptation to cholesterol-independence.Abbreviations BSA bovine serum albumin - C cholesterol - CD cyclodextrin - F68 Pluronic F68 - GS glutamine synthetase - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - MSX methionine sulphoximine  相似文献   

12.
A clonal strain of epithelial cells has been established from the transplantable Morris hepatoma 7800 and is designated 7800C1. The cells grow with a population doubling time of about three days in serum-supplemented synthetic medium. Cells of the 7800C1 strain have maintained measurable activities of all the enzymes of the urea cycle during 17 months in continuous culture. The activity of argininosuccinate lyase is approximately that found in normal rat liver, while argininosuccinate synthetase, carbamoyl phosphate synthetase, arginase and ornithine carbamoyl transferase activities are, respectively, 40%, 28%, 6%. and 1% of normal values. Treatment of 7800C1 cells with glucagon, dibutyryl 3′,5′-cyclic adenosine monophosphate or hydrocortisone did not increase the activity of any of the five enzymes.  相似文献   

13.
In view of the advantages of the bulk production of clonal pancreaticbeta cells, an investigation was made of the growth and insulin secretoryfunctions of an electrofusion-derived cell line (BRIN-BD11) immobilizedon a solid microcarrier, cytodex-1 or a macroporous microcarrier,cultispher-G. For comparison, similar tests were performed usingBRIN-BD11 cells present in single cell suspensions or allowed toform pseudoislets. Similar growth profiles were recorded for eachmicrocarrier with densities of 4.4×105±0.3 cells/ml and4.2×105±0.2 cells/ml achieved using cytodex-1 andcultispher-G, respectively. Cell viability began to decline on day 5 ofculture. Insulin concentration in the culture medium reached a peak of26±2.0 ng/ml and 24±2.2 ng/ml for cells grown oncytodex-1 and cultispher-G, respectively. Cells grown on both types ofmicrocarrier showed a significant 1.5–1.8-fold acuteinsulin-secretory response to 16.7 mmol/l glucose. L-alanine (10 mmol/l) andL-arginine (10 mmol/l) also induced significant 3–4 fold increasesof insulin release. BRIN-BD11 cells immobilized on cytodex-1 or cultispher-Gout-performed single cell suspensions and pseudoislets in terms ofinsulin-secretory responses to glucose and amino acids. A 1.3-fold,2.2-fold and 1.7-fold stimulation of insulin secretion was observed forglucose, L-alanine and L-arginine respectively in single cellsuspensions. Corresponding increases for pseudoislets were1.6–1.8-fold for L-alanine and L-arginine, with no significantresponse to glucose alone. These data indicate the utility ofmicro-carriers for the production of functioning clonal beta cells.  相似文献   

14.
The Xenopus laevis XTC cell line has been analyzed for the production of polypeptide growth factors and mesoderm-inducing activity. By the use of specific biological assays, it is shown that XTC cells produce a growth factor functionally related to the platelet-derived growth factor (PDGF) and two transforming growth factor (TGF)β-like activities. Mesoderm-inducing activity, as measured on X. laevis ectodermal explants from stage 10 embryos, was found to coelute on a Bio-Gel P-100 column with one of the TGFβ-like activities at an apparent molecular weight of 6–10 kDa. Analysis of the DNA content from XTC cells by flow cytometry demonstrated that the cell line is heterogeneous and consists of both tetraploid and diploid cells. Cloning of the XTC cells and selecting single-cell colonies on the basis of their ability to grow in soft agar resulted in the isolation of several homogeneous, morphologically different clonal derivatives. Analysis of conditioned medium from these clonal derivatives showed that only one of them, the only diploid line among six investigated, produced a strong heat- and acid-stable mesoderm-inducing activity that induced notochord and muscle formation in stage 10 X. laevis ectodermal expiants. The relation between this activity and a recently described TGFβ-like mesoderm-inducing factor obtained from XTC-conditioned medium will be discussed. In conclusion, a clonal cell line derived from X. laevis XTC cells which provides a good source for further characterization of mesoderm-inducing factors has been established.  相似文献   

15.
Influence of zinc supplementation (30 and 45 mg kg–1, orally once for 5 days) during chelation of lead (0.3 mmol kg–1, chelating agent, i.p., once for 5 days) on some selected variables of the immune system was investigated in male rats. Treatment with CaNa2EDTA either alone or in combination with zinc (30 mg kg–1) produced a significant recovery in lead induced alteration in primary antibody forming cells to T-dependent antigen and the delayed-type hypersensitivity response to bovine albumin. However, biologically significant recovery was observed only with zinc at a dose of 45 mg kg1. It is assumed that zinc depletion during lead exposure and chelation treatment lead to harmful effects on cellular proliferation by inhibiting DNA synthesis and various enzymes during mitosis. The zinc supplementation fulfills this requirement during proliferation and clonal expansion of immunocompetent cells augmenting the immune system.  相似文献   

16.
Cyclic AMP-activated chloride fluxes have been analyzed in HT29-18-C1 cells (a clonal cell line derived from a human colon carcinoma) using measurements of cell volume (electronic cell sizing), cell chloride content (chloride titrator) and intracellular chloride activity (6-methoxy-N-(3-sulfopropyl)quinolinium; SPQ). HT29-18-C1 was shown to mediate polarized chloride transport. In unstimulated cells, the apical membrane was impermeable to chloride and net chloride flux was mediated by basolateral furosemide-sensitive transport. Forskolin (10) (m) increased furosemideinsensitive chloride permeability of the apical membrane, and decreased steady-state intracellular chloride concentration approximately 9%. Cellular chloride depletion (substitution of medium chloride by nitrate or gluconate), caused greater than fourfold reduction in cellular chloride concentration. When chloride-depleted cells were returned to normal medium, cells regained chloride and osmolytes via bumetanide-sensitive transport, but forskolin did not stimulate bumetanideinsensitive chloride uptake. The inhibition of cAMP-activated chloride reuptake was not explained by limiting cation conductance, cell shrinkage, choice of substitute anion, or decreased generation of cAMP in chloridedepleted cells. When cells with normal chloride content were depolarized (135 mm medium potassium + 10 m valinomycin), cAMP activated electrogenic chloride uptake permselective for ClBr>NO 3 >I. The electrogenic transport pathway was inhibited in chloridedepleted cells. Results suggest that chloride depletion limits activation of electrogenic chloride flux.The technical assistance of Dwight Derr is gratefully acknowledged. We also thank Dr. Chahrzad Montrose-Rafizadeh for help in performance of the chloride efflux experiments. This work was supported by National Institutes of Health grants RO1-DK42457 and PO1-DK44484.  相似文献   

17.
The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.  相似文献   

18.
A bacterial strain (strain S5) which grows aerobically with the sulfonated azo compound 4-carboxy-4′-sulfoazobenzene as the sole source of carbon and energy was isolated. This strain was obtained by continuous adaptation of “Hydrogenophaga palleronii” S1, which has the ability to grow aerobically with 4-aminobenzenesulfonate. Strain S5 probably cleaves 4-carboxy-4′-sulfoazobenzene reductively under aerobic conditions to 4-aminobenzoate and 4-aminobenzene-sulfonate, which are mineralized by previously established degradation pathways.It is generally assumed that sulfonated azo dyes are not degraded under aerobic conditions (14). Nevertheless, there have been some reports which suggest a conversion of certain sulfonated azo dyes under aerobic conditions (3, 7, 8, 13, 15). Furthermore, certain carboxylated analogs of sulfonated azo compounds are utilized aerobically as the sole source of carbon and energy by specifically adapted bacteria (11, 12, 16, 17). However, unequivocal evidence for the productive mineralization of a sulfonated azo compound by bacteria is lacking. In the present article the first observation of the utilization of a sulfonated azo compound as the sole source of carbon and energy by a bacterial strain is reported.Previously, a mixed bacterial culture which mineralizes sulfanilate (4-aminobenzenesulfonate) was isolated. This coculture consisted of the strains “Hydrogenophaga palleronii” S1 and Agrobacterium radiobacter S2 (4, 5). Because sulfanilate occurs as an azoaryl structural element in many azo dyes, it was of interest whether this mixed culture could adopt the ability to reduce azo bonds and release sulfanilate as growth substrate. Therefore, the model sulfonated azo compound 4-carboxy-4′-sulfoazobenzene (CSAB) was synthesized by nitro-amine condensation starting with sulfanilic acid and 4-nitrobenzoic acid (1). The precipitated CSAB was separated from the reaction mixture by filtration and purified by repeated dissolution in alkali and precipitation with acid. The identity and purity of the bright orange product were analyzed by UV-visible light spectroscopy, elementary analysis, and high-pressure liquid chromatography (HPLC). For the solid material obtained, molar extinction coefficients of 23.74 and 1.13 mM−1 cm−1 in water were determined at the wavelengths of 326 and 434 nm, respectively. The elementary analytic results were consistent with the structure of CSAB. The purity of the preparation was tested by HPLC with a reversed-phase column and a solvent gradient from 1 to 90% (vol/vol) methanol and 0.3% (vol/vol) H3PO4. A single band which showed absorbance at a wavelength of 326 nm was eluted. At 210 nm a minor contaminant (about 15% of the signal intensity of CSAB) was detected. This compound was clearly different from either 4-nitrobenzoate or sulfanilate.The mixed culture was grown in repeated batch cultures in a mineral medium with sulfanilate (5 mM). About every 2 weeks the culture was transferred (1:10 [vol/vol]) to fresh medium, in which the sulfanilate concentration was subsequently reduced and the CSAB concentration increased (±0.5 mM each). The color of the azo dye disappeared after 2 months. The culture was transferred to a solid mineral medium with CSAB as the sole source of carbon. From this culture was obtained strain S5, which grew aerobically with the sulfonated azo compound CSAB as its sole source of carbon and energy and with a doubling time of 9.5 h (Fig. (Fig.1).1). The complete disappearance of the dye was demonstrated by the loss of the orange color from the medium and by HPLC analysis, whereas CSAB was not degraded in a sterile control flask. Based on its colony morphology and the results obtained with the commercial identification system Biolog GN, this strain strongly resembled “H. palleronii” S1. Recently, it was demonstrated that, in the presence of low concentrations of biotin, cyanocobalamin, and 4-aminobenzoate, strain S1 also grows in axenic culture with sulfanilate (2). Therefore the adaptation experiment was repeated in the presence of these three substances with a pure culture of strain S1. This experiment also resulted in the isolation of a strain which grew in axenic culture with CSAB as the sole source of carbon and energy. Open in a separate windowFIG. 1Aerobic growth of strain S5 with CSAB as the sole source of carbon and energy. The growth was determined photometrically (OD546), and the turnover of CSAB was measured by HPLC with a reversed-phase column and a solvent gradient consisting of H2O, methanol, and 0.3% H3PO4 with increasing concentrations of methanol (1 to 90%). An OD546 of 1 corresponded to 0.33 mg of protein ml−1.To ensure that the genetic backgrounds of strains S5 and S1 were identical, the genes for the 16S rRNAs were amplified by PCR with different universal primers (6) and sequenced in comparison to the corresponding gene from the type strain, H. palleronii DSM 63. It was found that the sequences from strains S1 and S5 were > 99.8% identical (there were only two discrepancies between the two sequences), but they showed only 97.7 to 97.9% identity with the 16S rRNA gene from H. palleronii DSM 63. It was therefore concluded that strain S5 was derived from strain S1 and that the strains do not belong to the species H. palleronii.A reductive cleavage of the azo bond of CSAB would result in the formation of 4-aminobenzoate and sulfanilate. Like the parent strain, S1, strain S5 grew in the presence of sulfanilate, 4-aminobenzoate, and 4-sulfocatechol. The doubling times with these compounds were 6.2 to 6.4 h. We therefore investigated whether reductive cleavage of CSAB by strain S5 occurs. Strain S5 was grown aerobically with 5 mM CSAB, and cell extracts were prepared (10) in different buffers. These cell extracts were incubated aerobically in cuvettes containing 50 mM Tris-HCl buffer (pH 8.0), 0.5 mM CSAB, 1 mM NADH, or 1 mM NADPH and with various mixtures of possible cofactors. The enzyme activity was measured spectrophotometrically at the absorption maximum for CSAB (at a wavelength of 434 nm), but no significant decrease in absorbance was observed. Neither addition of a membrane fraction nor performing the enzyme assays under anaerobic conditions (9) improved the turnover of CSAB in the cell-free system. Furthermore, there was no significant increase in azo reductase activity when harvested cells were resuspended in the culture supernatant instead of Tris-HCl buffer.The maximal enzyme activities observed for cell extracts were only about 30% of the activities found for intact cells. This suggested that during the disruption of the cells some important components of the azo reductase system were destroyed or some cofactors were present in only limiting quantities.Because it was difficult to obtain reproducible enzyme activities with cell extracts, the turnover of CSAB by resting cells was investigated. Cells of strain S5 were grown with CSAB (5 mM), harvested by centrifugation, resuspended in Tris-HCl at an optical density at 546 nm (OD546) of 5.3, and incubated in a water bath shaker (140 rpm; 30°C) with 0.5 mM CSAB (Fig. (Fig.2).2). Thus, the transient accumulation of two metabolites in the supernatants was observed by reversed-phase HPLC (column size, 250 by 4.6 mm) (SIL 100; Grom, Herrenberg, Germany). The solvent system consisted of a solvent gradient with increasing concentrations of methanol, starting with 1% (vol/vol) methanol, 98.9% (vol/vol) water, and 0.1% H3PO4. The flow rate was 0.7 ml min−1. The metabolites formed were identified as sulfanilate and 4-sulfocatechol by comparison of their retention times and in situ UV-visible light-spectra with authentic standards. Surprisingly, the concentration of 4-sulfocatechol in the medium increased (and decreased) during the experiment more rapidly than the concentration of sulfanilate (Fig. (Fig.2).2). 4-Sulfocatechol also temporarily accumulated when resting cells of strain S1 were incubated with sulfanilate (4, 5). This suggested that in the resting-cell assay the initial activity of the sulfanilate-converting enzyme was higher than the activity of the 4-sulfocatechol-oxidizing enzyme protocatechuate-3,4-dioxygenase type II. Presumably, the activity of the sulfanilate-converting enzyme decreased during the experiment more rapidly than the activity of protocatechuate-3,4-dioxygenase type II. No accumulation of 4-aminobenzoate or protocatechuate was found by HPLC analysis during the experiment. In a control experiment with cells of strain S1 grown with 4-aminobenzenesulfonate, no turnover of CSAB was observed by HPLC analysis. Open in a separate windowFIG. 2Conversion of CSAB (•) to sulfanilate (▪) and 4-sulfocatechol (□) by resting cells of strain S5. Strain S5 was grown in a mineral medium with CSAB as the sole source of carbon and energy, and resting cells were prepared as described in the text.The detection of sulfanilate derived from CSAB suggested a reductive cleavage of CSAB, yielding sulfanilate as one of the reduction products. This reaction should also proceed in the absence of oxygen. Therefore, resting cells were incubated under anaerobic conditions with CSAB. Surprisingly, the rate of CSAB turnover under anaerobic conditions was <2% of the turnover rate under aerobic conditions.A further indication of a reductive cleavage of CSAB into sulfanilate and 4-aminobenzoate was obtained by growing strain S5 with CSAB or a complex medium (HPG medium) (4). When the cells were grown in a mineral medium with CSAB and the turnover of the substrates was analyzed by HPLC, it was found that resting cells converted CSAB, 4-aminobenzoate, or 4-aminobenzenesulfonate with specific activities of 0.012, 0.026, and 0.011 μmol min−1 mg of protein−1, respectively. In contrast, after growth of the cells in HPG medium, these activities were only 0.007, 0.010, and 0.003 μmol min−1 mg of protein−1, respectively. Incubation of resting cells with CSAB and different potential inhibitors of ring cleavage dioxygenases showed that the turnover of CSAB was almost completely inhibited by the addition of 8-hydroxyquinoline or 2,2′-bipyridyl (1 mM each). The presence of 4-nitrocatechol (0.25 mM) also resulted in a pronounced reduction of the rate of CSAB turnover (6% of the rate in the absence of the inhibitor). In this system as well the formation of 4-sulfocatechol was observed.The degradation of sulfanilate and 4-aminobenzoate by strain S1 has been previously studied (5). The proposed degradation pathway for CSAB and its reduction products is shown in Fig. Fig.3.3. Open in a separate windowFIG. 3Proposed pathway for the degradation of CSAB by strain S5. 4AB, 4-aminobenzoate; 4ABS, 4-aminobenzenesulfonate (sulfanilate); 3,4DHB, 3,4-dihydroxybenzoate (protocatechuate); 4SC, 4-sulfocatechol; 2H4CMSA, 2-hydroxy-4-carboxymuconic semialdehyde; 3SM, 3-sulfomuconate; 4SL, 4-carboxymethyl-4-sulfobut-2-en-4-olide (4-sulfolactone); MA, maleylacetate; 3OA, 3-oxoadipate; TCC, tricarboxylic acid cycle.To obtain some information about the substrate specificity, resting cells were incubated with CSAB, 4,4′-dicarboxyazobenzene (DCAB), 4-hydroxy-4′-sulfoazobenzene, methyl orange [4-(N,N-dimethyl)-4′-sulfoazobenzene; color index (C.I.) 13025], orange II {4-[(2-hydroxy-1-naphthalenyl)azo]-benzenesulfonic acid; C.I. 15510}, or sunset yellow FCF {6-hydroxy-5-[(4-sulfophenyl)azo]-2-naphthol-6-sulfonic acid; FD&C no. 6; C.I. 15985}. Of these compounds, only CSAB and DCAB were converted by resting cells. DCAB was also utilized by strain S5 as the sole source of carbon and energy. Furthermore, no growth of strain S5 was found with acid black 24 and 52, acid blue 113, acid red 1, amaranth, direct red 81, direct yellow 4 and 50, mordant yellow 3, and naphthol blue black.The results presented in this study suggest that bacterial cultures with the ability to aerobically degrade simple sulfonated azo dyes may be obtained after preadaptation to sulfonated aminoaromatics and/or when reductive cleavage of the azo bond gives rise to an aerobically assimilable aminoaromatic structure, like 4-aminobenzoate. This selection scheme circumvents the problems observed during attempts to adapt bacteria with the ability to degrade carboxylated azo compounds for the degradation of sulfonated azo compounds (12). The ability of strain S5 to mineralize CSAB suggests that it is possible to degrade sulfonated azo dyes under aerobic conditions if biological systems which can grow and can mineralize the reduction products are available.

Nucleotide sequence accession number.

The nucleotide sequences for the 16S rRNAs from strains S5 and S1 have been deposited in the GenBank data library under accession no. AF019037 and AF019073, respectively.  相似文献   

19.
A vector system has been developed to express isoenzyme A1 of sweet potato peroxidase (POD) and was introduced into Saccharomyces cerevisiae. The system contains the signal sequence of Aspergillus oryzae -amylase to facilitate the extracellular secretion of peroxidase under the control of constitutive glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter. In a batch culture using YNBDCA medium (yeast nitrogen base without amino acids 6.7 g l–1, Casamino acids 5 g l–1 and glucose 20 g l–1), the recombinant strain expressed the swpa1 gene giving a secretion yield of POD activity of ca. 90% of total expressed peroxidase. Supplementation with PMSF (0.05 mM) and Casamino acids (5 g/50 ml) increased extracellular POD activity to nearly 10 kU ml–1, equivalent to 1.5 kU g–1 cell dry wt. This is 9 fold higher than that obtained in medium without PMSF. From SDS-PAGE and native-PAGE analyses POD has an M r of 53 kDa.  相似文献   

20.
Clonal variability in exponential growth rate and production of secondary metabolites was determined from clonal isolates of Alexandrium tamarense originating from a single geographical population from the east coast of Scotland. To assess variability in the selected phenotypic characteristics over a wide spectrum, 10 clones were chosen for experimentation from 67 clonal isolates pre-screened for their lytic capacity in a standardized bioassay with the cryptophyte Rhodomonas salina. Specific growth rates (μ) of the 10 clonal isolates ranged from 0.28 to 0.46 d−1 and were significantly different among clones. Cell content (fmol cell−1) and composition (mol%) of paralytic shellfish toxins (PSTs), analyzed by liquid chromatography with fluorescence detection (LC–FD), varied widely among these isolates, with total PST quotas ranging from 20 to 89 fmol cell−1. Except for strain 3, the toxins C1/C2, neosaxitoxin (NEO), saxitoxin (STX), and gonyautoxins-1 and -4 (GTX1/GTX4), were consistently the most relatively abundant, with lesser amounts of GTX2/GTX3 evident among all isolates. Only clone 3 contained >20 mol% of toxin B1, with C1/C2, GTX2/GTX3 and NEO in almost equimolar ratios.Eight of the 10 clones caused cell lysis of both R. salina and the heterotrophic dinoflagellate Oxyrrhis marina, as quantified from the dose–response curves from short-term (24 h) co-incubation bioassays. For two clones, no significant mortality even at high Alexandrium cell concentrations (ca. 104 mL−1) was observed. Allelochemical activity expressed as EC50 values, defined as the Alexandrium cell concentration causing lysis of 50% of target cells, varied by about an order of magnitude and was significantly different among clones. No correlation was observed between growth rate und allelochemical potency (as EC50) indicating that at least under non-limiting growth conditions no obvious growth reducing costs are associated with the production of allelochemically active secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号