首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Catabolite repression-resistant mutants of Bacillus subtilis.   总被引:3,自引:0,他引:3  
Mutants of Bacillus subtilis that are able to sporulate under the condition of catabolite repression were isolated by a simple selection technique. The mutants used in the present study were able to grow normally on minimal medium with ammonium sulphate as the nitrogen source and glucose as the carbon source. Studies carried out with these mutants show that there is no close relation between catabolite repression of an inducible enzyme, acetoin dehydrogenase, and that of sporulation. Certain mutants are able to sporulate in the presence of all the carbon sources tested but some mutants are resistant only to the carbon source used in isolation. It is suggested that several metabolic steps may be affected in catabolite repression of sporulation.  相似文献   

2.
Acetoin dehydrogenase can be catabolite repressed by numerous sources of carbon. The following results point out that the catabolite repression of this enzyme and the inhibition of sporulation are mediated by the same mechanism:
  1. Mutants, able to synthesize acetoin dehydrogenase in the presence of glucose, sporulate in glucose medium at a higher rate than the standard strain.
  2. The catabolite repressing effect of a compound and its ability to inhibit sporulation are in a direct relation to each other.
  3. The limitation of inorganic phosphate in the growth medium, which is known to favour sporulation, counteracts the catabolite repressing effect of glucose.
  相似文献   

3.
The amiE gene encodes an aliphatic amidase capable of converting fluoroacetamide to the toxic compound fluoroacetate and is one of many genes whose expression is subject to catabolite repression control in Pseudomonas aeruginosa. The protein product of the crc gene, Crc, is required for repression of amiE and most other genes subject to catabolite repression control in this bacterium. When grown in a carbon source such as succinate, wild-type P. aeruginosa is insensitive to fluoroacetamide (due to repression of amiE expression). In contrast, mutants harboring the crc-10 null allele cannot grow in the presence of fluoroacetamide (due to lack of repression of amiE). Selection for succinate-dependent, fluoroacetamide-resistant derivatives of the crc-10 mutant yielded three independent pseudorevertants containing suppressors that restored a degree of catabolite repression control. Synthesis of Crc protein was not reestablished in these pseudorevertants. All three suppressors of crc-10 were extragenic, and all three also suppressed a Delta crc::tetA allele. In each of the three pseudorevertants, catabolite repression control of amidase expression was restored. Catabolite repression control of mannitol dehydrogenase production was also restored in two of the three isolates. None of the suppressors restored repression of glucose-6-phosphate dehydrogenase or pyocyanin production.  相似文献   

4.
5.
6.
Catabolite inactivation of fructose-1,6-bisphosphatase, isocitrate lyase, phosphoenolpruvate carboxykinase and malate dehydrogenase in intact cells could be prevented by phenylmethylsulfonyl fluoride added 40 min prior to the addition of glucose. Protein synthesis, fermentative and respiratory activity and catabolite repression were not affected. Elimination of catabolite inactivation by the addition of PMSF revealed that catabolite repression started at different times for different enzyme.Abbreviation PMSF phenylmethylsulfonyl fluoride  相似文献   

7.
The regulation of the synthesis of the enzymes involved in the utilization of L-arginine, L-ornithine, agmatine, and putrescine as a sole nitrogen source in Escherichia coli K-12 was examined. The synthesis of agmatine ureohydrolase, putrescine aminotransferase, and pyrroline dehydrogenase is dually controlled by catabolite repression and nitrogen availability. Catabolite repression of agmatine ureohydrolase, but not that of putrescine aminotransferase or pyrroline dehydrogenase, is relieved by the addition of cAMP. Agmatine ureohydrolase synthesis in addition is subject to induction by L-arginine and agmatine. Arginine decarboxylase and ornithine decarboxylase synthesis is not sensitive to catabolite repression or to stimulation by nitrogen limitation or subject to substrate induction.  相似文献   

8.
The escape of several enzymes from “ammonia catabolite repression” in gdhA? (NADP-linked glutamate-dehydrogenase-less) mutants, as well as in gdhCR mutants of Saccharomyces cerevisiae, does not involve glutamine synthetase, either as a positive or as a negative control element. A glutamine-synthetase-less mutant (gln?) was used in this demonstration.In addition to its derepressing effect on the NAD-linked glutamate dehydrogenase, the gdhCR mutation releases “nitrogen catabolite repression” on arginase and allatoinase, as well as glutamine repression on glutamine synthetase. A gdhCS mutation was used to demonstrate that these effects are not mediated through the NAD-linked glutamate dehydrogenase.  相似文献   

9.
10.
The phenotypic properties of representatives of the five genetic classes of pleiotropic-negative sporulation mutants have been investigated. Protease production, alkaline and neutral proteases, was curtailed in spoA mutants, but the remainder of mutant classes produced both proteases, albeit at reduced levels. The spoA and spoB mutants plaqued phi2 and phi15 at high efficiency, but the efficiency of plating of these phages on spoE, spoF, and spoH mutants was drastically reduced. Antibiotic was produced by the spoH mutants and to a degree by some spoF mutants, but the other classes did not produce detectable activity. The spoA mutants were less responsive to catabolite repression of histidase synthesis by glucose than was the wild type. Severe catabolite repression could be induced in spoA mutants by amino acid limitation, suggesting that the relaxation of catabolite repression observed is not due to a defect in the mechanism of catabolite repression. Although others have shown a perturbation in cytochrome regulation in spoA and spoB mutants, the primary dehydrogenases, succinate dehydrogenase and reduced nicotinamide adenine dinucleotide dehydrogenase, leading to these cytochromes are unimpaired in all mutant classes. A comparison of the structural components of cell walls and membranes of spoA and the wild type is made. The pleiotropic phenotypes of these mutants are discussed.  相似文献   

11.
Loomis, William F., Jr. (Massachusetts Institute of Technology, Cambridge, Mass.), and Boris Magasanik. Nature of the effector of catabolite repression of beta-galactosidase in Escherichia coli. J. Bacteriol. 92:170-177. 1966.-Many carbon sources were found to give rise to catabolite repression of beta-galactosidase in a mutant strain of Escherichia coli lacking hexose phosphate isomerase activity. Compounds containing glucose or galactose cannot be formed from several of these carbon sources in this mutant strain, and, therefore, appear not to be required for catabolite repression of beta-galactosidase. Glucose was observed to elicit catabolite repression of beta-galactosidase in another mutant strain under conditions in which the formation of compounds of the citric acid cycle is inhibited. If catabolite repression of the lac operon is mediated by a single compound, it appears that the compound is related to the pentoses and trioses of intermediary metabolism. The repression of beta-galactosidase by galactose in galactokinase negative strains was shown to be independent of the gene, CR, which determines catabolite sensitivity of the lac operon, and to be dependent on a functional i gene.  相似文献   

12.
The alcR positive control gene is necessary for the expression of both alcA (coding for alcohol dehydrogenase ADH I), and aldA (coding for aldehyde dehydrogenase, AldDH) in Aspergillus nidulans. Using a cloned alcR probe and Northern blots analysis we show that: (1) alcR itself is inducible; (2) alcR inducibility depends on the expression of the alcR gene itself; and (3) alcR is subject to carbon catabolite repression and its expression is controlled by the negatively acting creA wide specificity gene. The repression of alcR is sufficient to explain the carbon catabolite repression of ADH I and AldDH.  相似文献   

13.
14.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

15.
The enzymes in the arginine breakdown pathway (arginase, ornithine-delta-transaminase, and Delta'-pyrroline-5-carboxylate dehydrogenase) were found to be present in Bacillus licheniformis cells during exponential growth on glutamate. These enzymes could be coincidentally induced by arginine or ornithine to a very high level and their synthesis could be repressed by the addition of glucose, clearly demonstrating catabolite repression control of the arginine degradative pathway. The strongest catabolite repression control of arginase occurred when cells were grown on glucose and this control decreased when cells were grown on glycerol, acetate, pyruvate, or glutamate. The proline catabolite pathway was present in B. licheniformis during exponential growth on glutamate. The proline oxidation and the Delta'-pyrroline-5-carboxylate dehydrogenase in this breakdown pathway were induced by l-proline to a high level. The Delta'-pyrroline-5-carboxylate dehydrogenase was found to be under catabolite repression control. Arginase could be induced by proline and arginine addition induced proline oxidation, suggesting a common in vivo inducer for these convergent pathways.  相似文献   

16.
Intracellular concentration of cAMP regulates the synthesis of enzymes sensitive to catabolite repression. The relationship between the single and multiple induction of beta-galactosidase (EC 3.2.1.23), L-tryptophanase (EC 4.1.99.1), D-serine deaminase (EC 4.2.1.14), L-asparaginase (EC 3.5.1.1) and L-malate dehydrogenase (EC 1.1.1.37) was studied and the effect of cAMP level on the induction in Escherichia coli Crookes (ATCC 8739) was investigated. A varying degree of catabolite repression was observed during induction of individual enzymes induced separately on different energy sources. The synthesis of l-tryptophanase was most sensitive, whereas l-asparaginase was not influenced at all. Exogenous cAMP was found to overcome partially the catabolite repression of beta-galactosidase and D-serine deaminase, both during single induction. The synthesis of l-malate dehydrogenase was negatively influenced by the multiple induction even in the presence of cAMP; on the other hand, the synthesis of l-tryptophanase was stimulated, independently of the level of the exogenous cAMP. Similarly, the activity of L-asparaginase slightly but significantly increased during the multiple induction of all five enzymes; here too the activity increase did not depend on exogenous cAMP.  相似文献   

17.
Three kinds of control mechanisms govern the expression of the members of the glp regulon for glycerol and sn-glycerol 3-phosphate (G3P) catabolism in Escherichia coli K-12: specific repression by the product of the glpR gene; catabolite repression; and respiratory repression (the effect exerted by exogenous hydrogen acceptors). The operons of the glp system show different patterns of response to each control. By growing in parallel a mutant strain with temperature-sensitive repressor (glpR(ts)) and an isogenic control with a deletion in the regulator gene at progressively higher temperatures, it was possible to show that the synthesis of aerobic G3P dehydrogenase (glpD product) is far more sensitive to specific repression than that of either glycerol kinase (glpK product) or G3P transport (glpT product). Conversely, in the strain with a deletion in the regulator gene, the syntheses of glycerol kinase and G3P transport are more sensitive to catabolite repression than that of the aerobic G3P dehydrogenase. The levels of the two flavoprotein G3P dehydrogenases vary in opposite directions in response to changes of exogenous hydrogen acceptors. For example, the ratio of the aerobic enzyme to the anaerobic enzyme (specified by glpA) is high when molecular oxygen or nitrate serves as the hydrogen acceptor and low when fumarate plays this role. This trend is not influenced by the addition of cyclic adenosine 3',5'-monophosphate to the growth medium. Thus, respiratory repression most likely involves a third mechanism of control, independent of specific or catabolite repression.  相似文献   

18.
The formation of glycerol-3-phosphate (G3P) in cells growing on TB causes catabolite repression, as shown by the reduction in malT expression. For this repression to occur, the general proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular EIIA(Glc), as well as the adenylate cyclase and the cyclic AMP-catabolite activator protein system, have to be present. We followed the level of EIIA(Glc) phosphorylation after the addition of glycerol or G3P. In contrast to glucose, which causes a dramatic shift to the dephosphorylated form, glycerol or G3P only slightly increased the amount of dephosphorylated EIIA(Glc). Isopropyl-beta-D-thiogalactopyranoside-induced overexpression of EIIA(Glc) did not prevent repression by G3P, excluding the possibility that G3P-mediated catabolite repression is due to the formation of unphosphorylated EIIA(Glc). A mutant carrying a C-terminally truncated adenylate cyclase was no longer subject to G3P-mediated repression. We conclude that the stimulation of adenylate cyclase by phosphorylated EIIA(Glc) is controlled by G3P and other phosphorylated sugars such as D-glucose-6-phosphate and is the basis for catabolite repression by non-PTS compounds. Further metabolism of these compounds is not necessary for repression. Two-dimensional polyacrylamide gel electrophoresis was used to obtain an overview of proteins that are subject to catabolite repression by glycerol. Some of the prominently repressed proteins were identified by peptide mass fingerprinting. Among these were periplasmic binding proteins (glutamine and oligopeptide binding protein, for example), enzymes of the tricarboxylic acid cycle, aldehyde dehydrogenase, Dps (a stress-induced DNA binding protein), and D-tagatose-1,6-bisphosphate aldolase.  相似文献   

19.
Nitrogen regulation of amino acid catabolism in Neurospora crassa   总被引:5,自引:0,他引:5  
Neurospora crassa can utilize numerous compounds including certain amino acids as a sole nitrogen source. Mutants of the nit-2 locus, a regulatory gene which is postulated to mediate nitrogen catabolite repression, are deficient in the ability to utilize several amino acids as well as other nitrogen sources used by wild type. Various enzymes involved in amino acid catabolism were found to be regulated in distinct ways. Arginase, ornithine transaminase, and pyrroline-5-carboxylate dehydrogenase are all inducible enzymes but are not subject to nitrogen catabolite repression. By contrast, proline oxidase and the amino acid transport system(s) are controlled by nitrogen repression and their synthesis is increased markedly when nitrogen source is limiting. Unlike wild type, the nit-2 mutant cannot derepress amino acid transport, although proline oxidase is regulated in a normal fashion.This work was supported by Grant R01 GM-23367 from the National Institutes of Health. T. J. F. was supported by an NIH Predoctoral Traineeship in Developmental Biology; G. A. M. is supported by NIH Career Development Award GM-00052.  相似文献   

20.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号