首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Aims

In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main methods

The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.

Key findings

Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.

Significance

These results suggest that saccharin enhances neurite extension by promoting microtubule organization.  相似文献   

3.
The human polyomavirus JC virus (JCV) is the causative agent of a fatal demyelinating disease, progressive multifocal leukoencephalopathy, and encodes six major proteins, including agnoprotein. Agnoprotein colocalizes with microtubules in JCV-infected cells, but its function is not fully understood. We have now identified fasciculation and elongation protein zeta 1 (FEZ1) as a protein that interacted with JCV agnoprotein in a yeast two-hybrid screen of a human brain cDNA library. An in vitro binding assay showed that agnoprotein interacted directly with FEZ1 and microtubules. A microtubule cosedimentation assay revealed that FEZ1 also associates with microtubules and that agnoprotein induces the dissociation of FEZ1 from microtubules. Agnoprotein inhibited the promotion by FEZ1 of neurite outgrowth in PC12 cells. Conversely, overexpression of FEZ1 suppressed JCV protein expression and intracellular trafficking in JCV-infected cells. These results suggest that FEZ1 promotes neurite extension through its interaction with microtubules, and that agnoprotein facilitates JCV propagation by inducing the dissociation of FEZ1 from microtubules.  相似文献   

4.
We reported previously on the purification and partial characterization of a putative microtubule-associated protein (MAP) from bovine adrenal cortex with an approximate molecular mass of 250 kDa. The protein was expressed ubiquitously in mammalian tissues, and bound to microtubules in vitro and in vivo, but failed to promote tubulin polymerization into microtubules. In the present study, partial amino acid sequencing revealed that the protein shares an identical primary structure with the widely distributed iron storage protein, ferritin. We also found that the putative MAP and ferritin are indistinguishable from each other by electrophoretic mobility, immunological properties and morphological appearance. Moreover, the putative MAP conserves the iron storage and incorporation properties of ferritin, confirming that the two are structurally and functionally the same protein. This fact led us to investigate the interaction of ferritin with microtubules by direct electron microscopic observations. Ferritin was bound to microtubules either singly or in the form of large intermolecular aggregates. We suggest that the formation of intermolecular aggregates contributes to the intracellular stability of ferritin. The interactions between ferritin and microtubules observed in this study, in conjunction with the previous report that the administration of microtubule depolymerizing drugs increases the serum release of ferritin in rats [Ramm GA, Powell LW & Halliday JW (1996) J Gastroenterol Hepatol11, 1072-1078], support the probable role of microtubules in regulating the intracellular concentration and release of ferritin under different physiological circumstances.  相似文献   

5.
Vaults are large (13 Mda) ribonucleoprotein particles that are especially abundant in multidrug resistant cancer cells and have been implicated in nucleocytoplasmic drug transport. To understand how these large barrel-shaped complexes are transported through the cytosol, we examined the association of vaults with microtubules both in vitro and in vivo. Within cells, a subpopulation of vaults clearly associates with microtubules, and these vaults remain associated with tubulin dimers/oligomers when microtubules are disassembled by nocodazole treatment. In vitro, a microtubule-pull down assay using highly purified rat vaults and reassembled microtubules reveals that vaults exhibit concentration-dependent binding to microtubules that does not require the carboxyl terminal end of tubulin. Remarkably, negative staining for electron microscopy reveals that vault binding to microtubules is mediated by the vault caps; more than 82% of bound vaults attach to the microtubule lattice with their long axes perpendicular to the long axis of the microtubule. Five to six vault particles were bound per micron of microtubule, with no crosslinking of microtubules observed, suggesting that only one end of the vault can bind microtubules. Taken together, the data support the model of vaults as barrel-shaped containers that transiently interact with microtubules.  相似文献   

6.
7.
Ferritin is a multimer of 24 subunits of heavy and light chains. In mammals, iron taken into cells is stored in ferritin or incorporated into iron-containing proteins. Very little ferritin is found circulating in mammalian serum; most is retained in the cytoplasm. Female mosquitoes, such as Aedes aegypti (yellow fever mosquito, Diptera), require a blood meal for oogenesis. Mosquitoes receive a potentially toxic level of iron in the blood meal which must be processed and stored. We demonstrate by 59Fe pulse-chase experiments that cultured A. aegypti larval CCL-125 cells take up iron from culture media and store it in ferritin found mainly in the membrane fraction and secrete iron-loaded ferritin. We observe that in these larval cells ferritin co-localizes with ceramide-containing membranes in the absence of iron. With iron treatment, ferritin is found associated with ceramide-containing membranes as well as in cytoplasmic non-ceramide vesicles. Treatment of CCL-125 cells with iron and CI-976, an inhibitor of lysophospholipid acyl transferases, disrupts ferritin secretion with a concomitant decrease in cell viability. Interfering with ferritin secretion may limit the ability of mosquitoes to adjust to the high iron load of the blood meal and decrease iron delivery to the ovaries reducing egg numbers.  相似文献   

8.
Ferritin, the iron storage protein, is an organic-inorganic hybrid colloid consisting of a hollow protein capsule, which is filled with ferrihydride with up to 4500 iron atoms. Owing to the varying iron content and the resulting density differences, as well as the protein oligomerization, a particle size distribution is superimposed with a density distribution, making a precise analysis of ferritin by analytical ultracentrifugation difficult. This study describes how the information of the sedimentation coefficient distribution can be combined with the diffusion coefficient distribution obtained from flow-field flow fractionation to yield the buoyant molar mass of the oligomers in the mixture, extending the information content of each individual analytical method. In addition, the sedimentation and diffusion coefficients are compatible with a simple hard-sphere aggregation model, suggesting that the ferritin oligomers up to the pentamer have a globular solution structure.Presented at the conference for Advances in Analytical Ultracentrifugation and Hydrodynamics, 8–11 June 2002, Grenoble, France  相似文献   

9.
Mechanism for oscillatory assembly of microtubules   总被引:1,自引:0,他引:1  
Dampened oscillations of microtubule assembly can accompany polymerization at high tubulin subunit concentrations. This presumably results from a synchronization of dynamic instability behavior, which generates a large population of rapidly disassembling microtubules, that liberate tubulin-GDP oligomers. Subunits in oligomers cannot assemble until they dissociate, to allow GDP-GTP exchange. To determine whether rapidly disassembling microtubules generate oligomers directly, we measured the rate of dilution-induced disassembly of tubulin-GDP microtubules and the rate of dissociation of GDP from the so-formed tubulin-GDP subunits. The rate of GDP dissociation from liberated subunits was found to correspond to that of tubulin-GDP subunits (t1/2 = 5 s), rather than tubulin-GDP oligomers. This indicates that tubulin-GDP subunits are released from microtubules undergoing rapid disassembly. Oligomers apparently form in a side reaction from the high concentration of tubulin-GDP subunits liberated from the synchronously disassembling microtubule population. The rate of subunit dissociation is 0.11 s-1 with oligomers formed by concentrating tubulin-GDP subunits and 0.045 s-1 with oligomers formed by cold-induced microtubule disassembly. This difference provides evidence that the conformation of tubulin-GDP subunits released from rapidly disassembling microtubules differs from tubulin-GDP subunits that were not recently in the microtubule lattice.  相似文献   

10.
How microtubules get fluorescent speckles.   总被引:4,自引:0,他引:4       下载免费PDF全文
The dynamics of microtubules in living cells can be seen by fluorescence microscopy when fluorescently labeled tubulin is microinjected into cells, mixing with the cellular tubulin pool and incorporating into microtubules. The subsequent fluorescence distribution along microtubules can appear "speckled" in high-resolution images obtained with a cooled CCD camera (Waterman-Storer and Salmon, 1997. J. Cell Biol. 139:417-434). In this paper we investigate the origins of these fluorescent speckles. In vivo microtubules exhibited a random pattern of speckles for different microtubules and different regions of an individual microtubule. The speckle pattern changed only after microtubule shortening and regrowth. Microtubules assembled from mixtures of labeled and unlabeled pure tubulin in vitro also exhibited fluorescent speckles, demonstrating that cellular factors or organelles do not contribute to the speckle pattern. Speckle contrast (measured as the standard deviation of fluorescence intensity along the microtubule divided by the mean fluorescence intensity) decreased as the fraction of labeled tubulin increased, and it was not altered by the binding of purified brain microtubule-associated proteins. Computer simulation of microtubule assembly with labeled and unlabeled tubulin showed that the speckle patterns can be explained solely by the stochastic nature of tubulin dimer association with a growing end. Speckle patterns can provide fiduciary marks in the microtubule lattice for motility studies or can be used to determine the fraction of labeled tubulin microinjected into living cells.  相似文献   

11.
Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2)   总被引:1,自引:0,他引:1  
Iron is essential to plants. However, when free and in excess, iron can catalyze the formation of oxygen free radicals. Ferritin, a protein capable of storing up to 4500 atoms of iron, can act as an iron buffer inside plant cells. Using a strategy based in amplicon size difference, we were able to analyze the expression profile of the two rice ferritin genes (OsFER1 and OsFER2). Both genes are expressed, although with different regulation and organ distribution. Exposure to copper, Paraquat, SNP and excess iron led to accumulation of ferritin mRNA, remarkably of OsFER2. The iron-induced expression was abolished by treatment with GSH, indicating that the induction observed is dependent of an oxidative step. OsFER2 mRNA levels in rice flag leaves and panicles at different reproductive stages were higher than OsFER1 mRNA levels. No ferritin mRNA was detected in rice seeds. However, imbibition under light led to ferritin expression, which was abolished when seeds were kept in the dark, suggesting a light-regulated induction. Ferritin mRNA accumulation was seen in the dark only when seeds were germinated in the presence of externally supplied iron. We suggest that the primary role of rice ferritins is related to defense against iron-mediated oxidative stress.  相似文献   

12.
Ferritin is a multisubunit protein that is responsible for storing and detoxifying cytosolic iron. Ferritin can be found in serum but is relatively iron poor. Serum ferritin occurs in iron overload disorders, in inflammation, and in the genetic disorder hyperferritinemia with cataracts. We show that ferritin secretion results when cellular ferritin synthesis occurs in the relative absence of free cytosolic iron. In yeast and mammalian cells, newly synthesized ferritin monomers can be translocated into the endoplasmic reticulum and transits through the secretory apparatus. Ferritin chains can be translocated into the endoplasmic reticulum in an in?vitro translation and membrane insertion system. The insertion of ferritin monomers into the ER occurs under low-free-iron conditions, as iron will induce the assembly of ferritin. Secretion of ferritin chains provides a mechanism that limits ferritin nanocage assembly and ferritin-mediated iron sequestration in the absence of the translational inhibition of ferritin synthesis.  相似文献   

13.
Ferritin protein nanocages that form iron oxy biominerals in the central nanometer cavity are nature’s answer to managing iron and oxygen; gene deletions are lethal in mammals and render bacteria more vulnerable to host release of antipathogen oxidants. The multifunctional, multisubunit proteins couple iron with oxygen (maxi-ferritins) or hydrogen peroxide (mini-ferritins) at catalytic sites that are related to di-iron sites oxidases, ribonucleotide reductase, methane monooxygenase and fatty acid desaturases, and synthesize mineral precursors. Gated pores, distributed symmetrically around the ferritin cages, control removal of iron by reductants and chelators. Gene regulation of ferritin, long known to depend on iron and, in animals, on a noncoding messenger RNA (mRNA) structure linked in a combinatorial array to functionally related mRNA of iron transport, has recently been shown to be linked to an array of proteins for antioxidant responses such as thioredoxin and quinone reductases. Ferritin DNA responds more to oxygen signals, and ferritin mRNA responds more to iron signals. Ferritin genes (DNA and RNA) and protein function at the intersection of iron and oxygen chemistry in biology.  相似文献   

14.
The establishment of neural circuits requires both stable and plastic properties in the neuronal cytoskeleton. In this study we show that properties of stability and lability reside in microtubules and these are governed by cellular differentiation and intracellular location. After culture for 3, 7, and 14 d in nerve growth factor-containing medium, PC-12 cells were microinjected with X-rhodamine-labeled tubulin. 8-24 h later, cells were photobleached with a laser microbeam at the cell body, neurite shaft, and growth cone. Replacement of fluorescence in bleached zones was monitored by digital video microscopy. In 3-d cultures, fluorescence recovery in all regions occurred by 26 +/- 17 min. Similarly, in older cultures, complete fluorescence recovery at the cell body and growth cone occurred by 10-30 min. However, in neurite shafts, fluorescence recovery was markedly slower (71 +/- 48 min for 7-d and 201 +/- 94 min for 14-d cultures). This progressive increase in the stability of microtubules in the neurite shafts correlated with an increase of acetylated microtubules. Acetylated microtubules were present specifically in the neurite shaft and not in the regions of fast microtubule turnover, the cell body and growth cone. During the recovery of fluorescence, bleached zones did not move with respect to the cell body. We conclude that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary.  相似文献   

15.
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.  相似文献   

16.
Tyrphostin AG-1714 and several related molecules with the general structure of nitro-benzene malononitrile (BMN) disrupt microtubules in a large variety of cultured cells. This process can be inhibited by the stabilization of microtubules with taxol or by pretreatment of the cells with pervanadate, which inhibits tyrosine phosphatases and increases the overall levels of phosphotyrosine in cells. Unlike other microtubule-disrupting drugs such as nocodazole or colchicine, tyrphostin AG-1714 does not interfere with microtubule polymerization or stability in vitro, suggesting that the effect of this tyrphostin on microtubules is indirect. These results imply an involvement of protein tyrosine phosphorylation in the regulation of overall microtubule dynamics. Tyrphostins of AG-1714 type could thus be powerful tools for the identification of such microtubule regulatory pathways.  相似文献   

17.
《The Journal of cell biology》1994,127(5):1407-1418
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in medium containing nocodazole or colchicine. In one series of experiments, neurons first were exposed to the microtubule-stabilizing drug, taxol, so that existing microtubules would remain intact while assembly of new microtubules was inhibited. The ability of neurons to form neurites was assessed by time-lapse video microscopy. Neurons subsequently were stained with antibodies against the tyrosinated and acetylated forms of alpha-tubulin and examined by laser confocal microscopy to visualize microtubules. Neurons were able to form short processes despite inhibition of microtubule assembly and they did so in a way that closely resembled process formation in control medium. Processes formed by neurons that had not been pretreated with taxol were devoid of microtubules. However, microtubules were present in processes of taxol- pretreated neurons. These microtubules contained acetylated alpha- tubulin, as is typical of stable microtubules, but not tyrosinated alpha-tubulin, the form present in recently assembled microtubules. These findings show that the initial steps in neurite formation do not depend on microtubule assembly and suggest that microtubules assembled in the cell body can be translocated into developing neurites as they emerge. The results are compatible with models of neurite formation which postulate that cytoplasm from the cell body is transported into filopodia by actomyosin-based motility mechanisms.  相似文献   

18.
Surface-decoration of microtubules by human tau   总被引:1,自引:0,他引:1  
Tau is a neuronal, microtubule-associated protein that stabilizes microtubules and promotes neurite outgrowth. Tau is largely unfolded in solution and presumably forms mostly random coil. Because of its hydrophilic nature and flexible structure, tau complexed to microtubules is largely invisible by standard electron microscopy methods. We applied a combination of high-resolution metal-shadowing and cryo-electron microscopy to study the interactions between tau and microtubules. We used recombinant tau variants with different domain compositions, (1) full length tau, (2) the repeat domain that mediates microtubule binding (K19), and (3) two GFP-tau fusion proteins that contain a globular marker (GFP) attached to full-length tau at either end. All of these constructs bind exclusively to the outside of microtubules. Most of the tau-related mass appears randomly distributed, creating a "halo" of low-density mass spread across the microtubule surface. Only a small fraction of tau creates a periodic signal at an 8 nm interval, centered on alpha-tubulin subunits. Our data suggest that tau retains most of its disordered structure even when bound to the microtubule surface. Hence, it binds along, as well as across protofilaments. Nevertheless, even minute concentrations of tau have a strong stabilizing effect and effectively scavenge unpolymerized tubulin.  相似文献   

19.
Centromere-dependent binding of yeast minichromosomes to microtubules in vitro   总被引:15,自引:0,他引:15  
J Kingsbury  D Koshland 《Cell》1991,66(3):483-495
We present an in vitro assay for yeast centromere function; isolated yeast minichromosomes require a functional centromere to bind to bovine microtubules and sediment with them. Centromere-bovine microtubule complexes form at physiological microtubule concentrations. Two of the three centromere DNA elements, which are necessary for centromere function in vivo, are also necessary for centromeres to bind microtubules in vitro. However, purified centromere DNA alone does not bind to microtubules. These results suggest that microtubule binding must be mediated by the two centromere DNA elements and factors that associate with one or both of them. The percent of centromeres with microtubule-binding activity is 7- to 10-fold higher in lysates made from nocodazole-arrested G2-M cells than from alpha factor G1 cells, suggesting that this centromere activity is regulated during the cell cycle. The potential of this assay for dissecting centromere assembly, function, and regulation is discussed.  相似文献   

20.
铁蛋白(Ferritin)是一种广泛存在于生物体中的笼状蛋白,由24个亚基自组装形成的蛋白质外壳和铁内核两部分组成,是维持机体铁代谢平衡的重要蛋白。最新发现,人血清铁蛋白含量的变化与某些疾病相关,特别是发现利用大肠杆菌重组表达、仿生合成的磁性人铁蛋白具有双功能特性,即识别肿瘤并使其可视化。此外,铁蛋白独特的结构及理化性质使其成为理想的纳米载体,用于构筑多功能肿瘤成像和药物输送的平台。本文重点介绍人铁蛋白的新功能及其在疾病诊断和肿瘤靶向治疗中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号