首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ras proteins function as signaling hubs that are activated by convergent signaling pathways initiated by extracellular stimuli. Activated Ras in turn regulates a diversity of downstream cytoplasmic signaling cascades. Ras proteins are founding members of a large superfamily of small GTPases that have significant sequence and biochemical similarities. Recent observations have established a complex signaling interplay between Ras and other members of the family. A key biochemical mechanism facilitating this crosstalk involves guanine nucleotide exchange factors (GEFs), which serve as regulators and effectors, as well as signaling integrators, of Ras signaling.  相似文献   

2.
Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

3.
《Molecular membrane biology》2013,30(7-8):427-444
Abstract

Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

4.
Ras GTPases regulate cellular growth and differentiation and are modulated by myriad stimuli including growth factors, cytokines, antigens, and UV irradiation. Ras GTPases are molecular switches that are active when GTP-bound and inactive when GDP-bound. The ability of these GTPases to signal requires that the GTP-bound form engage downstream effectors, interactions that occur only on the cytosolic surface of cellular membranes. Ras family proteins include H-Ras, N-Ras, K-Ras, and Rap1. Insight into the regulation and signaling properties of these molecules has come largely from in vitro studies relying on cellular extracts prepared following cellular stimulation. Since Ras GTPases are expressed on multiple cellular compartments that include the plasma membrane, vesicles derived from the plasma membrane, and other internal membranes such as the ER and Golgi complex, analysis of how their spatial distribution modulates signaling has remained unknown. We have developed fluorescent, GFP-based probes capable of selectively binding GTP-bound Ras or Rap1 in living cells. We have used these reporters to examine sites of cellular activation of Ras and Rap1 during growth factor stimulation. These studies have revealed new insights into the platforms from which these GTPases signal and have led to the hypothesis that GTPase signaling is modulated in a compartmentalized fashion. Here, we describe the design and implementation of fluorescent probes for Ras and Rap1.  相似文献   

5.
Gain-of-function mutants of Ras and Rho family small GTPases have proven to be important tools in analyzing signaling downstream of these small GTPases. The Ras-related GTPase Rheb has emerged as a key player downstream of TSC1-2 in activating signaling to mammalian target of rapamycin (mTOR) effectors of cell growth such as S6K and 4E-BP1. The TSC1-2 tumor suppressor complex has been shown to act as a RhebGAP, converting Rheb from a GTP-bound to a GDP-bound form. Here we report the identification of a mutant Rheb (S16HRheb) that exhibits gain-of-function properties. At endogenous levels of expression S16HRheb exhibits increased GTP loading in vivo and is resistant to TSC1-2 GAP in vitro. Compared with wild-type Rheb, S16HRheb is more active at promoting the phosphorylation of the mTOR effectors S6K1 and 4E-BP1. Thus S16HRheb will help to identify proximal signaling events downstream of Rheb and allow potential Rheb-independent functions downstream of TSC1-2 to be investigated.  相似文献   

6.
Rac GTPases and their effectors control cellular morphogenesis in a wide range of developmental contexts by regulating the structure and dynamics of the actin cytoskeleton. Although much is known about the biochemistry of Racs and Rac regulators, less is known about how Racs control cellular morphogenesis, including axon development, in vivo. Recent loss-of-function genetic studies using model organisms have shown that Racs and their effectors are required for multiple aspects of axon development, including axon outgrowth, axon guidance and axon branching. Interestingly, these studies have also revealed that Rac activity is required to prune spurious axons and branches. Analyses of Racs and their upstream and downstream effectors suggest that Rac signaling is complex. Different neurons utilize distinct combinations of upstream Rac regulators during axon development, possibly reflecting responses to different axon path-finding signals, and Racs use distinct downstream effectors to mediate different aspects of axon development, possibly reflecting differential regulation of the lamellipodial and filopodial growth-cone actin-cytoskeleton domains underlying axon developmental events.  相似文献   

7.
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.  相似文献   

8.
Small GTPases are molecular switches that have been adopted to control many eukaryotic cell functions. Starting with the study of the protooncogene Ras in the early 1980s, detailed pathways have been uncovered upstream and downstream of Ras-related GTP binding proteins. Nonetheless, novel members have been discovered at a pace that has outstripped cell biologists, and thus much remains to be established regarding newer family members. Undiscovered functions are still being uncovered for "established" small GTPases such as Ras, Rho, and Ran. The topics covered at this meeting indeed demonstrate that Ras proteins are at the heart of cellular dynamics.  相似文献   

9.
Yang HW  Shin MG  Lee S  Kim JR  Park WS  Cho KH  Meyer T  Do Heo W 《Molecular cell》2012,47(2):281-290
Phosphoinositide 3-kinases (PI3Ks) and Ras and Rho family small GTPases are key regulators of cell polarization, motility, and chemotaxis. They influence each other's activities by direct and indirect feedback processes that are only partially understood. Here, we show that 21 small GTPase homologs activate PI3K. Using a microscopy-based binding assay, we show that K-Ras, H-Ras, and five homologous Ras family small GTPases function upstream of PI3K by directly binding the PI3K catalytic subunit, p110. In contrast, several Rho family small GTPases activated PI3K by an indirect cooperative positive feedback that required a combination of Rac, CDC42, and RhoG small GTPase activities. Thus, a distributed network of Ras and Rho family small GTPases induces and reinforces PI3K activity, explaining past challenges to elucidate the specific relevance of different small GTPases in regulating PI3K and controlling cell polarization and chemotaxis.  相似文献   

10.
Rho GTPase expression in tumourigenesis: evidence for a significant link   总被引:12,自引:0,他引:12  
Rho proteins belong to the small GTPases superfamily. They function as molecular switches that, in response to diverse stimuli, control key signaling and structural aspects of the cell. Although early studies proposed a role for Rho GTPases in cellular transformation, this effect was underestimated due to the fact that no genetic mutations affecting Rho-encoding genes were found in tumors. Recently, it has become evident that Rho GTPases participate in the carcinogenic process by either overexpression of some of the members of the family with oncogenic activity, downmodulation of other members with suggested tumor suppressor activity, or by alteration of upstream modulators or downstream effectors. Thus, alteration of the levels of expression of different members of the family of Rho GTPases has been detected in many types of human tumors leading to a great interest in the cellular effects elicited by these oncoproteins. This essay reviews the current evidence of dysregulation of Rho signaling by overexpression in human tumors.  相似文献   

11.
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF–Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.  相似文献   

12.
Regulation of ion channels by heterotrimeric guanosine triphosphatases (GTPases), activated by heptathelical membrane receptors, has been the focus of several recent reviews. In comparison, regulation of ion channels by small monomeric G proteins, activated by cytoplasmic guanine nucleotide exchange factors, has been less well reviewed. Small G proteins, molecular switches that control the activity of cellular and membrane proteins, regulate a wide variety of cell functions. Many upstream regulators and downstream effectors of small G proteins now have been isolated. Their modes of activation and action are understood. Recently, ion channels were recognized as physiologically important effectors of small GTPases. Recent advances in understanding how small G proteins regulate the intracellular trafficking and activity of ion channels are discussed here. We aim to provide critical insight into physiological control of ion channel function and the biological consequences of regulation of these important proteins by small, monomeric G proteins.  相似文献   

13.
The Rab GTPase family   总被引:3,自引:0,他引:3  
Stenmark H  Olkkonen VM 《Genome biology》2001,2(5):reviews3007.1-reviews30077
The Rab family is part of the Ras superfamily of small GTPases. There are at least 60 Rab genes in the human genome, and a number of Rab GTPases are conserved from yeast to humans. The different Rab GTPases are localized to the cytosolic face of specific intracellular membranes, where they function as regulators of distinct steps in membrane traffic pathways. In the GTP-bound form, the Rab GTPases recruit specific sets of effector proteins onto membranes. Through their effectors, Rab GTPases regulate vesicle formation, actin- and tubulin-dependent vesicle movement, and membrane fusion.  相似文献   

14.
Monomeric G-proteins, also referred to as small GTPases, function as biological hubs being activated by extracellular stimuli and regulate downstream signalling events, which result in different cellular responses. The importance of these mechanisms is mirrored by the fact that several pathological conditions, including allergic asthma, are associated with derailed GTPases signalling. For this reason attention has been focused on the role of monomeric G-proteins and their effectors in airway (patho)physiology. In this article we review our current knowledge on the regulation and functions of Ras and Rho GTPase signalling under physiological and pathophysiological conditions in the pulmonary system. Based on recent findings concerning novel regulatory proteins for Ras family members, we further discuss potential future directions for therapeutical interventions in asthma.  相似文献   

15.
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed “effectors,” to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided  相似文献   

16.
Ras GTPases are central to many physiological and pathological signaling pathways and act via a combination of effectors. In mammals, at least three Ral exchange factors (RalGEFs) contain a Ras association domain and constitute a discrete subgroup of Ras effectors. Despite their ability to bind activated Rap as well as activated Ras, they seem to act downstream of Ras but not downstream of Rap. We have revisited the Ras/Rap-Ral connections in Drosophila melanogaster by using iterative two-hybrid screens with these three GTPases as primary baits and a subsequent genetic approach. We show that (i) the Ral-centered protein network appears to be extremely conserved in human and flies, (ii) in this network, RGL is a functional Drosophila orthologue of RalGEFs, and (iii) the RGL-Ral pathway functionally interacts with both the Ras and Rap pathways. Our data do not support the paradigmatic model where Ral is in the effector pathway of Ras. They reveal a signaling circuitry where Ral is functionally downstream of the Rap GTPase, at odds with the pathways described for mammalian cell lines. Thus, in vivo data show variations in the connectivity of pathways described for cell lines which might display only a subset of the biological possibilities.  相似文献   

17.
The appropriate development and regulation of neuronal morphology are important to establish functional neuronal circuits and enable higher brain function of the central nervous system. R-Ras, a member of the Ras family of small GTPases, plays crucial roles in the regulation of axonal morphology, including outgrowth, branching, and guidance. GTP-bound activated R-Ras reorganizes actin filaments and microtubules through interactions with its downstream effectors, leading to the precise control of axonal morphology. However, little is known about the upstream regulatory mechanisms for R-Ras activation in neurons. In this study, we found that brain-derived neurotrophic factor (BDNF) has a positive effect on endogenous R-Ras activation and promotes R-Ras-mediated axonal growth. RNA interference knockdown and overexpression experiments revealed that RasGRF1, a guanine nucleotide exchange factor (GEF) for R-Ras, is involved in BDNF-induced R-Ras activation and the promotion of axonal growth. Phosphorylation of RasGRF1 by protein kinase A at Ser916/898 is needed for the full activation of its GEF activity and to facilitate Ras signaling. We observed that BDNF treatment markedly increased this phosphorylation. Our results suggest that BDNF is one of the critical extrinsic regulators for R-Ras activation, and that RasGRF1 is an intrinsic key mediator for BDNF-induced R-Ras activation and R-Ras-mediated axonal morphological regulation.  相似文献   

18.
细胞发育是细胞内各种复杂反应在时间和空间上有序协调的过程, 包括细胞增殖、胞质分裂、细胞运动、细胞分化和组织生成等.作为G蛋白家族重要成员的RhoA起了重要的调控作用:在G蛋白调控因子(如GEF XPLN、 p115RhoGEF、p190RhoGAP等)的作用下,活化的RhoA依次与效应蛋白分子(如ROCK1/2、 mDia、 PRK1/2、 citron 激酶等)结合, 从而开启了下游的信号通路, 最终使细胞能够迅速地对外界刺激做出反应.干细胞是一类既能自我更新又能特异分化形成终末分化细胞的细胞, 而 RhoA对干细胞的自我更新和定向分化也起着“开关"作用, 对RhoA信号通路的调节调控了胚胎发生、神经发生、造血生成及成骨和肌肉生成等干细胞分化发育过程.肿瘤是正常细胞在各种因素长期作用下增殖异常的产物, 而RhoA异常表达与肿瘤的发生、侵润与转移密切相关, RhoA信号通路与p53等基因的交互作用在肿瘤的发育过程中也发挥了重要的作用.  相似文献   

19.
Ypt and Rab GTPases: insight into functions through novel interactions.   总被引:23,自引:0,他引:23  
Ypt/Rab GTPases are key regulators of vesicular transport in eukaryotic cells. During the past two years, a number of new Ypt/Rab-interacting proteins have been identified and shown to serve as either upstream regulators or downstream effectors. Proteins that interact with these regulators and effectors of Ypt/Rabs have also been identified, and together they provide new insights into Ypt/Rab mechanisms of action. The picture that emerges from these studies suggests that Ypt/Rabs function in multiple and diverse aspects of vesicular transport. In addition, not only are Ypt/Rabs highly conserved, but their functions and interactions are as well. Interestingly, crosstalk among Ypt/Rabs and between Ypt/Rabs and other signaling factors, suggest the possibility of coordination of the individual vesicular transport steps and of the protein transport machinery with other cellular processes.  相似文献   

20.
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity. The Rab and Ral GTPases are thought to function in exocyst assembly and vesicle-tethering processes, whereas the Rho family GTPases seem to function in the local activation of the exocyst complex to facilitate downstream vesicle-fusion events. The localized activation of the exocyst by Rho GTPases is likely to have an important role in spatial regulation of exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号