首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatophores of Rhodospirillum rubrum contain a membrane-bound pyrophosphatase that synthesizes pyrophosphate when an electrochemical H+ gradient is formed across the chromatophore membrane upon illumination. In this report it is shown that MgCl2 and Pi have different effects on the synthesis of pyrophosphate in the light depending on whether initial velocities or steady-state levels are examined. When the water activity of the medium is reduced by the addition of organic solvents, soluble yeast inorganic pyrophosphatase (no H+ gradient present) synthesizes pyrophosphate in amounts similar to those synthesized by the chromatophores in totally aqueous medium during illumination, (H+ gradient present). The pH, MgCl2 and Pi dependence for the synthesis of pyrophosphate by the chromatophores at steady-state is similar to that observed at equilibrium with the soluble enzyme in the presence of organic solvents. The possibility is raised that a decrease in water activity may play a role in the mechanism by which the energy derived from the electrochemical H+ gradient is used for the synthesis of pyrophosphate in chromatophores of R. rubrum.  相似文献   

2.
The oligomycin- and N,N'-dicyclohexylcarbodiimide-sensitive adenosine triphosphatase complex extracted with Triton X-100 from the chromatophores of Rhodospirillum rubrum was extensively purified. The purification procedure included (diethylamino)ethylcellulose chromatography and glycerol gradient centrifugation. The specific activity of Mg2+-dependent ATP hydrolysis in the purified preparation increased about 11-fold, while that of Ca2+-dependent ATP hydrolysis increased 50-fold as compared with chromatophores. The purified adenosine triphosphatase complex dissociated into a maximum of eight different polypeptides upon electrophoresis in the presence of sodium dodecyl sulfate. The estimated subunit molecular weights were as follows: 56 000 (alpha), 50 000 (beta), 33 000 (gamma), and those ranging from 17 000 to 9400 for the remaining smaller subunits. The purified preparation was incorporated into phospholipid vesicles by using the freeze--thaw technique. The reconstituted vesicles catalyzed [32P]ATP exchange, which was almost completely inhibited by both oligomycin and N,N'-dicyclohexylcarbodiimide as well as by a protonophorous uncoupler, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone.  相似文献   

3.
The inorganic phosphate-water oxygen exchange reaction has been studied in chromatophores of Rhodospirillum rubrum. Under appropriate conditions, chromatophores catalyzed this exchange at a rate of up to 150 μatom oxygen/h/mg bacteriochlorophyll. The reaction is largely inhibited by inhibitors of the membrane-bound inorganic pyrophosphatase, fluoride and methylene diphosphonate, and is not inhibited by oligomycin. These results indicate that the Pi ? HOH oxygen exchange is almost entirely due to the pyrophosphatase. In the presence of ADP, the exchange reaction was stimulated by about 40% and this portion of the exchange was sensitive to oligomycin, but not to fluoride or methylene diphosphonate. Thus this portion of the exchange can be attributed to the ATP synthese complex. The rates of the oxygen exchange reaction and other chromatophore-catyalyzed reactions are compared.  相似文献   

4.
The membrane vesicles (proteoliposomes) have been reconstituted from phospholipids and inorganic pyrophosphatase (EC 3.6.1.1) isolated from Rhodospirillum rubrum chromatophores. An addition of inorganic pyrophosphate (PPi) causes a Mg2+-dependent formation of a transmembrane electric potential difference and an uptake of penetrating tetraphenylborate anions by the proteoliposomes. Thus, isolated pyrophosphatase, being incorporated into the phospholipid membrane, functions as a MgPPi-dependent protein generator of the electric current.  相似文献   

5.
《BBA》1986,851(2):276-282
Photosynthetic formation of inorganic pyrophosphate (PPi) in Rhodospirillum rubrum chromatophores has been studied utilizing a new and sensitive method for continuous monitoring of PPi synthesis. Studies of the reaction kinetics under a variety of conditions, e.g., at different substrate concentrations and different electron-transport rates, have been performed. At very low light intensities the rate of PPi synthesis is twice the rate of ATP synthesis. Antimycin A, at a concentration which strongly inhibited the photosynthetic ATP formation, inhibited the PPi synthesis much less. Even at low rates of electron transport a significant rate of PPi synthesis is obtained. The rate of photosynthetic ATP formation is stimulated up to 20% when PPi synthesis is inhibited. It is shown that PPi synthesis and ATP synthesis compete with each other. No inhibition of pyrophosphatase activity is observed at high carbonyl cyanide p-trifluoromethoxyhydrazone concentration while ATPase activity is strongly inhibited under the same conditions.  相似文献   

6.
This minireview in memory of Daniel I. Arnon, pioneer in photosynthesis research, concerns properties of the first and still only known alternative photophosphorylation system, with respect to the primary phosphorylated end product formed. The alternative to adenosine triphosphate (ATP), inorganic pyrophosphate (PPi), was produced in light, in chromatophores from the photosynthetic bacterium Rhodospirillum rubrum, when no adenosine diphosphate (ADP) had been added to the reaction mixture (Baltscheffsky H et al. (1966) Science 153: 1120–1122). This production of PPi and its capability to drive energy requiring reactions depend on the activity of a membrane bound inorganic pyrophosphatase (PPase) (Baltscheffsky M et al. (1966) Brookhaven Symposia in Biology, No. 19, pp 246–253); (Baltscheffsky M (1967) Nature 216: 241–243), which pumps protons (Moyle J et al. (1972) FEBS Lett 23: 233–236). Both enzyme and substrate in the PPase (PPi synthase) are much less complex than in the case of the corresponding adenosine triphosphatase (ATPase, ATP synthase). Whereas an artificially induced proton gradient alone can drive the synthesis of PPi, both a proton gradient and a membrane potential are required for obtaining ATP. The photobacterial, integrally membrane bound PPi synthase shows immunological cross reaction with membrane bound PPases from plant vacuoles (Nore BF et al. (1991) Biochem Biophys Res Commun 181: 962–967). With antibodies against the purified PPi synthase clones of its gene have been obtained and are currently being sequenced. Further structural information about the PPi synthase may serve to elucidate also fundamental mechanisms of electron transport coupled phosphorylation. The existence of the PPi synthase is in line with the assumption that PPi may have preceded ATP as energy carrier between energy yielding and energy requiring reactions.  相似文献   

7.
J J Wu  J T Ma  R L Pan 《FEBS letters》1991,283(1):57-60
A radiation inactivation technique was employed to determine the functional size of pyrophosphatase (PPase) from the chromatophores of Rhodospirillum rubrum. The activities of hydrolysis and synthesis reactions of pyrophosphatase and its coupled proton translocation decayed in a simple exponential function with the increase of radiation dosages. D37 values of 5.2 +/- 0.7 and 5.8 +/- 0.8 Mrads were obtained for pyrophosphate hydrolysis and its associated proton translocation yielding molecular masses of 167.7 +/- 30.7 and 156.3 +/- 26.6 kDa, respectively. Similarly, a D37 value of 4.4 +/- 0.6 Mrads was measured for the acid-base induced pyrophosphate synthesis resulting in a radiation sensitive size of 196.3 +/- 31.9 kDa.  相似文献   

8.
A sensitive method for the analysis of inorganic pyrophosphate (PPi) which utilizes the enzymes ATP sulfurylase and firefly luciferase is described. The assay is based on continuous monitoring of the ATP formed in the ATP sulfurylase reaction using purified firefly luciferase. The assay can be completed in less than 2 s and is not affected by inorganic phosphate. The method has been used for continuous monitoring of formation of PPi in Rhodospirillum rubrum chromatophores. The assay is extremely sensitive, the linear range of the assay being 1 X 10(-9) - 5 X 10(-7) M PPi. It is suitable for routine applications. It is also possible to use the method for determination of low amounts of adenosine 5'-phosphosulfate.  相似文献   

9.
A comparative study of the orthophosphate-pyrophosphate exchange reaction catalyzed by the soluble pyrophosphatase from baker's yeast and by the membrane-bound pyrophosphatase of Rhodospirillum rubrum chromatophores was performed. In both systems the rate of exchange increased when the pH of the medium was raised from 6.0 to 7.8 and when the MgCl2 concentration was raised from 0.1 mM to 20 mM. For the yeast pyrophosphatase the exchange rates measured at different pH values and in the presence of 6.7 to 8.8 mM free Mg2+ superimposed as a single curve when plotted as a function of the concentrations of either HPO4(2-) or MgHPO4. This was not observed with the use of R. rubrum chromatophores. With yeast pyrophosphatase, the Km for Pi was higher than 10 mM and could not be measured when the free Mg2+ concentration in the medium was lower than 0.5 mM. There was a decrease in the Km for Pi when the free Mg2+ concentration was raised to 6.7-8.8 mM or when, in the presence of low free Mg2+, the organic solvents dimethylsulfoxide (20% v/v) or ethyleneglycol (40% v/v) were included in the assay medium. In the presence of 6.7-8.8 mM free Mg2+ the Km for total Pi was 7 mM at pH 7.0 and 12 mM at pH 7.8. For the ionic species HPO4(2-) and MgHPO4, the Km values were 5.8 mM and 4.2 mM respectively. In the presence of 0.24-0.42 mM free Mg2+ and either 20% (v/v) dimethylsulfoxide or 40% (v/v) ethyleneglycol the Km values for total Pi, HPO4(2-) and MgHPO4 were 7.6, 3.5 and 0.5 mM respectively. With R. rubrum chromatophores, the Km for Pi in the presence of 5.5-7.5 mM free Mg2+ was very high and could not be measured. In the presence of 0.24-0.45 mM free Mg2+ the ratio between the velocities of hydrolysis and synthesis of pyrophosphate measured at pH 7.8 with yeast pyrophosphatase and chromatophores of R. rubrum were practically the same. When the free Mg2+ concentration was raised to 5.5-8.8 mM this ratio decreased from 1028 to 540 when the yeast pyrophosphatase was used and from 754 to 46 when chromatophores were used.  相似文献   

10.
A method is described for isolating the beta subunit from spinach chloroplast F1 (CF1). The isolated beta subunit reconstituted an active F1 hybrid with the F1 of Rhodospirillum rubrum chromatophores from which the beta subunit had been removed. The CF1 beta subunit was similar to the isolated beta subunit of Escherichia coli F1 (Gromet-Elhanan, Z., Khananshivili, D., Weiss, S., Kanazawa, H., and Futai, M. (1985) J. Biol. Chem. 260, 12635-12640) in that it restored a substantial rate of ATP hydrolysis and low, but significant light-dependent ATP synthesis to the beta-less chromatophores. The low rate of photophosphorylation observed with the hybrid enzyme probably resulted from a looser coupling of the CF1 beta subunit to proton translocation in the R. rubrum Fo-F1 complex. The hybrid enzyme exhibited a high specificity for Mg2+-ATP as substrate for ATP hydrolysis and both ATP synthesis and hydrolysis were strongly inhibited by the antibiotic tentoxin. In contrast, chromatophores reconstituted with the native R. rubrum beta subunit actively hydrolyzed both Mg2+-ATP and Ca2+-ATP and were insensitive to tentoxin. These results indicate a close functional homology between the beta subunits of the prokaryotic and eukaryotic H+-ATPases and suggest a role for the beta subunit in conferring the different metal ion specificities and inhibitor sensitivities upon the enzymes. They also demonstrate the feasibility of isolating the beta subunit from CF1 in a reconstitutively active form.  相似文献   

11.
Immunological cross-reactivity among three types of inorganic pyrophosphatases, that is, the proton pumping inorganic pyrophosphate synthase (H(+)-PPi synthase) and the soluble inorganic pyrophosphatase, both from Rhodospirillum rubrum, and the vacuolar membrane inorganic pyrophosphatase (H(+)-PPase) from mung bean (Vigna radiata), were examined by means of immunoblot analyses. Antibodies raised against the mung bean H(+)-PPase cross-reacted with the H(+)-PPi synthase from R. rubrum but not with the soluble PPase from R. rubrum. N,N'-dicyclohexylcarbodiimide (DCCD), which inhibits both synthesis and hydrolysis of PPi catalysed by purified and chromatophore H(+)-PPi synthase, binds to the enzyme as shown by fluorography of [14C]DCCD labelling. These results suggest that the R. rubrum H(+)-PPase share close structural similarities with the vacuolar H(+)-PPase from Mung bean.  相似文献   

12.
The cyanobacterium Anacystis nidulans contained levels of inorganic pyrophosphate (PP) which were about 50% of those of ATP in dark and light. Steady-state levels of PP were not decreased by the inhibitor of non-cyclic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethyl urea]. During transition from dark to light levels of PP increased rapidly. The rate of increase corresponded to a rate of synthesis of about 150 mol x mg chl-1 x h-1. PP formation was affected by DCMU in a similar manner to ATP synthesis.The question whether the light-dependent formation of PP is a photosynthetic process or is linked to reactions releasing PP has been studied using a newly developed cell-free system from Anacystis. Rates of ATP synthesis by phenazine metosulfate-catalyzed cyclic photophosphorylation in this system were about 170 mol x mg chl-1 x h-1. Formation of PP could only be observed in presence of a trapping system which converted PP to ATP, otherwise PP was split by a particle-bound inorganic pyrophosphatase. In absence of ADP neither ATP nor PP was formed.It is concluded that the light-dependent formation of PP in Anacystis is not a photosynthetic process and that the PP is derived from ATP.Abbreviations AMS adenosine 5-monosulfate - APS adenosine 5-phosphosulfate - APSase adenosine 5-triphosphate sulfurylase - chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino)ethanesulfonic acid - PCA perchloric acid - PMS phenazine metosulfate - PPase inorganic pyrophosphatase  相似文献   

13.
The amount of F1-ATPase in chromatophores from Rhodospirillum rubrum was determined by Western blotting using anti-RrF1 rabbit antibodies. 9.1 mmol F1 (mol bacteriochlorophyll)-1 was obtained or 14% of the total protein content of the chromatophores. The turnover rate of the F0F1-ATPase was 17 molecules ATP s-1 during synthesis, 2 molecules ATP s-1 during hydrolysis under coupled conditions with Mg2+ as the divalent cation, and 7 molecules ATP s-1 during hydrolysis in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Binding of 1 mol oligomycin/mol F0F1-ATPase was found to inhibit the activities of the enzyme completely. A single binding site was found with a Kd of approximately 2 microM.  相似文献   

14.
1. The kinetics of inhibition of calf-intestinal alkaline phosphatase by inorganic phosphate, fluorophosphate, inorganic pyrophosphate, beta-glycerophosphate and adenosine 5'-triphosphate in the range pH8-10 were investigated. The reference substrate was 4-methylumbelliferyl phosphate. 2. The inhibitions were ;mixed' in that both K(m) and V were affected, but the competitive element was by far the stronger. 3. In each case the pH profile for the competitive K(i) was similar to the pH profile for K(m). Since the K(m) and K(i) values both change 100-fold over the pH range 8-10, it is concluded that the inhibitors compete with the substrate for the same active site. 4. It was also found that the enzyme preparation hydrolysed fluorophosphate, pyrophosphate and adenosine 5'-triphosphate as readily as it hydrolysed 4-methylumbelliferyl phosphate and beta-glycerophosphate. Each pH-activity curve, however, had a different shape, but with the exception of pyrophosphate the activity approached the same maximum value at high pH. 5. Attempts to separate the phosphomonoesterase and pyrophosphatase activities by column chromatography were not successful, and the results of other experiments listed suggest that the two activities are a property of the same enzyme. 6. The effect of Mg(2+) ions is briefly mentioned: the phosphomonoesterase activity is enhanced whereas the pyrophosphatase and adenosine triphosphatase activities are strongly inhibited in the presence of excess of Mg(2+) ions.  相似文献   

15.
In this work, we show that adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) is a substrate for yeast inorganic pyrophosphatase (PPase) (EC 3.6.1.1) and further, using chirally labeled [gamma-17O,18O]ATP gamma S, that enzyme-catalyzed hydrolysis to produce chiral inorganic thio[17O,18O]phosphate proceeds with inversion of configuration. Both the synthesis of chiral ATP gamma S and the determination of inorganic thiophosphate configuration were carried out as described by Webb [Webb, M. R. (1982) Methods Enzymol. 87, 301-316]. We also show in a single turnover experiment performed in H2(18)O that 1 mol each of 18O16O3P and 16O4P is produced per mol of inorganic pyrophosphate hydrolyzed, a strong indication that oxygen uptake to form inorganic phosphate on PPase catalysis of inorganic pyrophosphate hydrolysis comes directly from H2O. These two results provide strong evidence for the conclusion that PPase catalyzes inorganic pyrophosphate hydrolysis via a single-step direct phosphoryl transfer to water and does not involve formation of a phosphorylated enzyme intermediate.  相似文献   

16.
Photophosphorylation and ATPase activities were restored to beta-less Rhodospirillum rubrum chromatophores by their reconstitution with purified beta-subunits of either R. rubrum F1-ATPase (Rr beta) or Escherichia coli F1-ATPase (Ec beta). In the homologous reconstituted system both activities were restored to the same extent, whereas in the hybrid system ATP synthesis was restored to about 10% when the hydrolysis was restored to 200%. This difference in rates of synthesis and hydrolysis was not due to any general uncoupling effect of Ec beta leading to an increased membrane permeability to protons, because with both hybrid and homologous systems an identical light-induced quenching of quinacrine fluorescence was observed. They differed, however, in ATP-driven quenching of quinacrine fluorescence, which was much lower in the hybrid system. These results suggest that the hybrid has a decreased capacity for proton-translocation through the membrane-bound Fo channel during ATP hydrolysis, and probably also during ATP synthesis. The very high ATPase activity of the hybrid system indicates that it might enable the released protons to leak to the outside medium rather than to move inside through the Fo channel. The activities restored by Rr beta and Ec beta exhibit a similar sensitivity to dicyclohexylcarbodiimide, but different sensitivities to oligomycin and to an anti-E. coli F1 (EcF1) antibody. Oligomycin inhibited only the homologous R. rubrum system whereas anti-EcF1 was a much more effective inhibitor of the hybrid system. It is therefore concluded that Rr beta plays a role, that the Ec beta cannot fulfill, in conferring oligomycin sensitivity to the RrFo X F1-ATP synthase-ATPase complex.  相似文献   

17.
The relation that exists between the Pi-PPi exchange reaction and pyrophosphate hydrolysis by the membrane-bound pyrophosphatase of chromatophores of Rhodospirillum rubrum was studied. The two reactions have a markedly different requirement for added Mg2+. Optimal rates of hydrolysis were attained at 1 mM Mg2+ with 0.67 mM pyrophosphate; the rate od hydrolysis correlated with the concentration of Mg-pyrophosphate, which indicated that the latter was the substrate for hydrolysis. The Pi-PPi exchange reaction rate was low at concentrations of added Mg2+ below 1 mM (0.67 mM pyrophosphate), but increased as the concentration of Mg2+ in the medium was increased. The Pi-PPi exchange reaction depends on the concentration of MgHPO4, which suggests that this is the substrate in the exchange reaction. However, it is likely that free Mg2+ also exerts a favorable effect on the Pi-PPi exchange reaction. The optimal concentration for the Pi-PPI exchange reaction was approx 240 microM, which suggests that the concentration of the hydrolyzable substrates modulates the kinetic characteristics of the enzyme.  相似文献   

18.
Alkaline inorganic pyrophosphatase and Mg-ATPase are localized within the mitoplast of maize seeding mitochondria. NaF inhibited the PPase activity, whereas oligomycin and dicyclohexylcarbodiimide inhibited the Mg-ATPase activity. The mitoplast preparation synthesized PPi from Pi under conditions excluding hydrolysis of endogenous ATP. PPi synthesis was inhibited by ADP, antimycin A, NaCN and 2,4- dinitrophenol but not by oligomycin. It is suggested that PPi synthesis in the maize seedling mitochondria proceeds at the expense of the energy of electron transport chain and is independent of the ATP synthesis.  相似文献   

19.
Lipoprotein complexes, containing (1) bacteriochlorophyll reaction centers, (2) bacteriochlorophyll light-harvesting antenna or (3) both reaction centers and antenna, have been isolated from chromatophores of non-sulphur purple bacteria Rhodospirillum rubrum by detergent treatments. The method of reconstituting the proteoliposomes containing these complexes is described. Being associtated with planas azolectin membrane, ptoteoliposomes as well as intact chromatophores were found to generate a light-dependent transmembrane electric potential difference measured by Ag/AgC1 electrodes and voltmeter. The direction of the electric field inproteoliposomes can be regulated by the addition of antenna complexes to the reconstitution mixture. The reaction center complex proteoliposomes generate an electric field of a direction opposite to that in chromatophores, whereas proteoliposomes containing reaction center complexes and a sufficient amount of antenna complexes produce a potential difference as in chromatophores. ATP and inorganic pyrophosphate, besides light, were shown to be usable as energy sources for electric generation in chromatophores associated with planar membrane.  相似文献   

20.
Trans cisternal elements of the Golgi apparatus from rat liver, identified by thiamin pyrophosphatase cytochemistry, were isolated by preparative free-flow electrophoresis and were found to undergo acidification as measured by a spectral shift in the absorbance of acridine orange. Acidification was supported not only by adenosine triphosphate (ATP) but nearly to the same degree by inorganic pyrophosphate (PPi). The proton gradients generated by either ATP or PPi were collapsed by addition of a neutral H+/K+ exchanger, nigericin, or the protonophore, carbonyl cyanide m-chlorophenylhydrazone, both at 1.5 microM. Both ATP hydrolysis and ATP-driven proton translocation as well as pyrophosphate hydrolysis and pyrophosphate-driven acidification were stimulated by chloride ions. However, ATP-dependent activities were optimum at pH 6.6, whereas pyrophosphate-dependent activities were optimum at pH 7.6. The Mg2+ optima also were different, being 0.5 mM with ATP and 5 mM with pyrophosphate. With both ATPase and especially pyrophosphatase activity, both by cytochemistry and analysis of free-flow electrophoresis fractions, hydrolysis was more evenly distributed across the Golgi apparatus stack than was either ATP- or PPi-induced inward transport of protons. Proton transport colocalized more closely with thiamin pyrophosphatase activity than did either pyrophosphatase or ATPase activity. ATP- and pyrophosphatase-dependent acidification were maximal in different electrophoretic fractions consistent with the operation of two distinct proton translocation activities, one driven by ATP and one driven by pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号