首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparison of peptidase gene families in the newly released Drosophila melanogaster and Caenorhabditis elegans genomes highlights important differences in peptidase distributions with relevance to the evolution of both form and function in these two organisms and can help to identify the most appropriate model when using comparative studies relevant to the human condition.  相似文献   

2.
3.
The ability to form selective cell-cell adhesions is an essential property of metazoan cells. Members of the cadherin superfamily are important regulators of this process in both vertebrates and invertebrates. With the advent of genome sequencing projects, determination of the full repertoire of cadherins available to an organism is possible and here we present the identification and analysis of the cadherin repertoires in the genomes of Caenorhabditis elegans and Drosophila melanogaster. Hidden Markov models of cadherin domains were matched to the protein sequences obtained from the translation of the predicted gene sequences. Matches were made to 21 C. elegans and 18 D. melanogaster sequences. Experimental and theoretical work on C. elegans sequences, and data from ESTs, show that three pairs of genes, and two triplets, should be merged to form five single genes. It also produced sequence changes at one or both of the 5' and 3' termini of half the sequences. In D. melanogaster it is probable that two of the cadherin genes should also be merged together and that three cadherin genes should be merged with other neighbouring genes.Of the 15 cadherin proteins found in C. elegans, 13 have the features of cell surface proteins, signal sequences and transmembrane helices; the other two have only signal sequences. Of the 17 in D. melanogaster, 11 at present have both features and another five have transmembrane helices. The evidence currently available suggests about one-third of the cadherins in the two organisms can be grouped into subfamilies in which all, or parts of, the molecules are conserved. Each organism also has a approximately 980 residue protein (CDH-11 and CG11059) with two cadherin domains and whose sequences match well over their entire length two proteins from human brain. Two proteins in C. elegans, HMR-1A and HMR-1B, and three in D. melanogaster, CadN, Shg and CG7527, have cytoplasmic domains homologous to those of the classical cadherin genes of chordates but their extracellular regions have different domain structures. Other common subclasses include the seven-helix membrane cadherins, Fat-like protocadherins and the Ret-like cadherins. At present, the remaining cadherins have no obvious similarities in their extracellular domain architecture or homologies to their cytoplasmic domains and may, therefore, represent species-specific or phylum-specific molecules.  相似文献   

4.
Singh ND  Davis JC  Petrov DA 《Genetics》2005,171(1):145-155
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs.  相似文献   

5.
The usage of preferred codons in Drosophila melanogaster is reduced in regions of lower recombination. This is consistent with population genetics theory, whereby the effectiveness of selection on multiple targets is limited by stochastic effects caused by linkage. However, because the selectively preferred codons in D. melanogaster end in C or G, it has been argued that base-composition-biasing effects of recombination can account for the observed relationship between preferred codon usage and recombination rate (Marais et al., 2003). Here, we show that the correlation between base composition (of protein-coding and intron regions) and recombination rate holds only for lower values of the latter. This is consistent with a Hill-Robertson interference model and does not support a model whereby the entire effect of recombination on codon usage can be attributed to its potential role in generating compositional bias.  相似文献   

6.
At increasing speed, sequencing data are being made public from both complex and simple life forms. Although biomedical interests tend to focus on mammalian genes, only simple organisms allow rapid genetic manipulation and functional analysis. A prerequisite for the meaningful extrapolation of gene functional studies from invertebrates to man is that the orthologs under study are unambiguously linked. However, identifying orthologs is not trivial, especially where large gene families are involved. We present here an automated sequence analysis procedure that allows a rapid visualization of most likely ortholog pairs. We illustrate the utility of this approach for the human gene family of protein tyrosine phosphatases (PTPs) as compared with the full set of Caenorhabditis elegans and Drosophila melanogaster conceptual ORFs. The approach is based on a reciprocal series of BLAST searches, which are automatically stored and represented in an HTML-formatted table. We have used this 'MetaBlast' approach to compile lists of human PTPs and their worm and fly orthologs. Many of these PTP orthologs had not been previously identified as such.  相似文献   

7.
8.
Kettin is a large modular protein associated with thin filaments in the Z-disc region of insect muscles. The sequence of a 21.3 kb contig of the Drosophila gene has been determined. The corresponding protein sequence has 35 immunoglobulin-like (Ig) domains which are separated by shorter linker sequences, except near the N and C termini of the molecule where linker sequences are short or missing. This confirms a model in which each Ig domain binds to an actin protomer. The Drosophila kettin gene is at 62C 1-3 on the third chromosome. Two P-element insertions, l(3)j1D7 and l(3)rL182 are in the kettin gene, and complementation tests showed that existing l(3)dre8 mutations are in the same gene. The RNA was detected in wild-type Drosophila embryos at stage 11, first in the gut invagination region of the mesoderm, and by stage 13 in both visceral and somatic mesoderm. Somatic mesoderm expression became segmental at stage 13. RNA expression was greatly reduced in embryos of P-element homozygotes but normal in heterozygotes. The structure of the flight muscle in all the heterozygous mutants was normal, including the myofibril-cuticle connections, and they were able to fly. Kettin sequence homologous to the Drosophila protein, was identified in the Caenorhabditis elegans genome database. The RNA was detected in pharyngeal, body wall and anal depressor muscles of larvae and adult worms, as well as in the male gonad. Antibody to insect kettin labelled the pharyngeal, body wall, anal depressor and proximal gonadal muscles in adult worms. Body wall muscles were labelled in an obliquely striated pattern consistent with the Z-disc localisation in insect muscle. The relationship of kettin to D-titin, which has been assigned to the same chromosomal locus in Drosophila, is discussed.  相似文献   

9.
Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.  相似文献   

10.
Frame IG  Cutfield JF  Poulter RT 《Gene》2001,263(1-2):219-230
The BEL group of retroelements is present in greater numbers, variety and taxonomic range than may have been thought previously. In addition to the insects, nematodes and schistosomes, BEL-like elements are present in echinoderms, urochordates, and at least two highly diverged species of fish. We describe one new full-length BEL-like element in Fugu that we call Suzu, another in Drosophila that we call Tinker, and seven new families in C. elegans. Many of the C. elegans elements have an unusual insertion at the 5' end. The previously known Roo, TRAM and Telemac are also BEL-like retrotransposons. Some BEL-like elements have captured an envelope gene, probably from other retroelements in some cases but from a phlebovirus in one case.  相似文献   

11.

Background  

Codon usage bias has been widely reported to correlate with GC composition. However, the quantitative relationship between codon usage bias and GC composition across species has not been reported.  相似文献   

12.
Drosophila melanogaster is an arthropod with a much more complex anatomy and physiology than the nematode Caenorhabditis elegans. We investigated one of the protein superfamilies in the two organisms that plays a major role in development and function of cell-cell communication: the immunoglobulin superfamily (IgSF). Using hidden Markov models, we identified 142 IgSF proteins in Drosophila and 80 in C. elegans. Of these, 58 and 22, respectively, have been previously identified by experiments. On the basis of homology and the structural characterisation of the proteins, we can suggest probable types of function for most of the novel proteins. Though overall Drosophila has fewer genes than C. elegans, it has many more IgSF cell-surface and secreted proteins. Half the IgSF proteins in C. elegans and three quarters of those in Drosophila have evolved subsequent to the divergence of the two organisms. These results suggest that the expansion of this protein superfamily is one of the factors that have contributed to the formation of the more complex physiological features that are found in Drosophila.  相似文献   

13.
The deoxyhexose sugar fucose has an important fine-tuning role in regulating the functions of glycoconjugates in disease and development in mammals. The two genetic model organisms Caenorhabditis elegans and Drosophila melanogaster also express a range of fucosylated glycans, and the nematode particularly has a number of novel forms. For the synthesis of such glycans, the formation of GDP-fucose, which is generated from GDP-mannose in three steps catalysed by two enzymes, is required. By homology we have identified and cloned cDNAs encoding these two proteins, GDP-mannose dehydratase (GMD; EC 4.2.1.47) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GER or FX protein; EC 1.1.1.271), from both Caenorhabditis and Drosophila. Whereas the nematode has two genes encoding forms of GMD (gmd-1 and gmd-2) and one GER-encoding gene (ger-1), the insect has, like mammalian species, only one homologue of each (gmd and gmer). This compares to the presence of two forms of both enzymes in Arabidopsis thaliana. All corresponding cDNAs from Caenorhabditis and Drosophila, as well as the previously uncharacterized Arabidopsis GER2, were separately expressed, and the encoded proteins found to have the predicted activity. The biochemical characterization of these enzymes is complementary to strategies aimed at manipulating the expression of fucosylated glycans in these organisms.  相似文献   

14.
Increased protection from reactive oxygen species (ROS) is believed to increase life span. However, it has not been clearly demonstrated that endogenous ROS production actually limits normal life span. We have identified a mutation in the Caenorhabditis elegans iron sulfur protein (isp-1) of mitochondrial complex III, which results in low oxygen consumption, decreased sensitivity to ROS, and increased life span. Furthermore, combining isp-1(qm150) with a mutation (daf-2) that increases resistance to ROS does not result in any significant further increase in adult life span. These findings indicate that both isp-1 and daf-2 mutations increase life span by lowering oxidative stress and result in the maximum life span increase that can be produced in this way.  相似文献   

15.
Exposure to sub-lethal levels of stress, or hormesis, was a means to induce longevity. By screening for mutations that enhance resistance to multiple stresses, we identified multiple alleles of alpha-1,2-mannosidase I ( mas1 ) which, in addition to promoting stress resistance, also extended longevity. Longevity enhancement is also observed when mas1 expression is reduced via RNA interference in both Drosophila melanogaster and Caenorhabditis elegans. The screen also identified Edem1 ( Edm1 ) , a gene downstream of mas1, as a modulator of lifespan. As double mutants for both mas1 and Edm1 showed no additional longevity enhancement, it appeared that both mutations function within a common pathway to extend lifespan. Molecular analysis of these mutants revealed that the expression of BiP , a putative biomarker of dietary restriction (DR), is down-regulated in response to reductions in mas1 expression. These findings suggested that mutations in mas1 may extend longevity by modulating DR.  相似文献   

16.
The relationship between the codon usage bias and the sequence context surrounding the AUG translation initiation codon was examined in 1100 Drosophila melanogaster mRNA sequences. The codon usage bias measured by the "codon adaptation index" (CAI), and the effectiveness of the AUG context for translation initiation assessed by the "AUG context adaptation index" (AUGCAI), showed a significant positive relationship (correlation coefficient: r = 0.34, p <0.0001), indicating that these two factors are evolutionally under a similar natural selection constraint at the translational level. The importance of each position of the AUG context in relation to codon usage bias was examined, and the preference for the nucleotide at the -13, -12, -11, -10, -7, -6, -5, -4, -3, -2, and -1 positions showed a significant positive correlation to the codon usage bias, suggesting the action of natural selection on these very specific positions of the Drosophila genome. The relationship between AUGCAI value and gene length was also examined, and a significant negative relationship was found (r = -0.15, p <0.0001), suggesting a general tendency of higher expressivity of shorter genes, and of lower expressivity of longer genes in D. melanogaster.  相似文献   

17.
Maglich JM  Sluder A  Guan X  Shi Y  McKee DD  Carrick K  Kamdar K  Willson TM  Moore JT 《Genome biology》2001,2(8):research0029.1-research00297

Background

The availability of complete genome sequences enables all the members of a gene family to be identified without limitations imposed by temporal, spatial or quantitative aspects of mRNA expression. Using the nearly completed human genome sequence, we combined in silico and experimental approaches to define the complete human nuclear receptor (NR) set. This information was used to carry out a comparative genomic study of the NR superfamily.

Results

Our analysis of the human genome identified two novel NR sequences. Both these contained stop codons within the coding regions, indicating that both are pseudogenes. One (HNF4 γ-related) contained no introns and expressed no detectable mRNA, whereas the other (FXR-related) produced mRNA at relatively high levels in testis. If translated, the latter is predicted to encode a short, non-functional protein. Our analysis indicates that there are fewer than 50 functional human NRs, dramatically fewer than in Caenorhabditis elegans and about twice as many as in Drosophila. Using the complete human NR set we made comparisons with the NR sets of C. elegans and Drosophila. Searches for the >200 NRs unique to C. elegans revealed no human homologs. The comparative analysis also revealed a Drosophila member of NR subfamily NR3, confirming an ancient metazoan origin for this subfamily.

Conclusions

This work provides the basis for new insights into the evolution and functional relationships of NR superfamily members.  相似文献   

18.
In vertebrates, mitotic and meiotic M phase is facilitated by the kinase Greatwall (Gwl), which phosphorylates a conserved sequence in the effector Endosulfine (Endos). Phosphorylated Endos inactivates the phosphatase PP2A/B55 to stabilize M-phase-specific phosphorylations added to many proteins by cyclin-dependent kinases (CDKs). We show here that this module functions essentially identically in Drosophila melanogaster and is necessary for proper mitotic and meiotic cell division in a wide variety of tissues. Despite the importance and evolutionary conservation of this pathway between insects and vertebrates, it can be bypassed in at least two situations. First, heterozygosity for loss-of-function mutations of twins, which encodes the Drosophila B55 protein, suppresses the effects of endos or gwl mutations. Several types of cell division occur normally in twins heterozygotes in the complete absence of Endos or the near absence of Gwl. Second, this module is nonessential in the nematode Caenorhaditis elegans. The worm genome does not contain an obvious ortholog of gwl, although it encodes a single Endos protein with a surprisingly well-conserved Gwl target site. Deletion of this site from worm Endos has no obvious effects on cell divisions involved in viability or reproduction under normal laboratory conditions. In contrast to these situations, removal of one copy of twins does not completely bypass the requirement for endos or gwl for Drosophila female fertility, although reducing twins dosage reverses the meiotic maturation defects of hypomorphic gwl mutants. These results have interesting implications for the function and evolution of the mechanisms modulating removal of CDK-directed phosphorylations.  相似文献   

19.
20.
In eukaryotes, double-stranded RNAs (dsRNAs) or short, interfering dsRNAs (siRNAs) can reduce the accumulation of a sequence-related mRNA, often resulting in a loss-of-function phenotype-a process termed RNA interference (RNAi). Unfortunately, some mRNAs are resistant to the effects of dsRNA. Experiments designed to unravel RNAi mechanisms in Caenorhabditis elegans have led to the identification of two worm proteins, RRF-31,2 and, now, ERI-1,3 that can inhibit RNAi responses. Animals defective in either protein can display enhanced RNAi phenotypes for mRNAs that were previously resistant to dsRNA. Since ERI-1 is a conserved protein, development of procedures to enhance RNAi effectiveness in other systems may be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号