首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomograms of transverse sections of Merino wool fibers obtained from fleeces differing in fiber curvature were reconstructed from image series collected using a 300 kV transmission electron microscope. Trichokeratin intermediate filaments (IFs) from the ortho-, para- and mesocortices were modeled from the tomograms. IFs were predominantly arranged in left-handed concentric helices with the relative angle of IFs increasing progressively from the center to the periphery of orthocortex macrofibrils. The median increase in IF angle between adjacent IFs between the center and periphery was 2.5°. The length of one turn of the helical path of an IF was calculated to be approximately 1 μm for an IF tilted at 30° and positioned 100 nm from the macrofibril center. With the exception of one paracortex macrofibril that weakly resembled an orthocortex macrofibril, all para- and mesocortex macrofibrils modeled had a parallel arrangement of the IFs, with a more ordered arrangement found in the mesocortex. Within the limited sample set, there appeared to be no significant relationship between IF angle and fiber curvature. We examined the matrix/IF ratio (in the form of proportion of matrix to one IF, calculated from IF center-to-center distance and IF diameter) for 28 macrofibrils used for modeling. The proportion of matrix was significantly different in the different cortex cell types, with paracortex having the most (0.61), orthocortex having the least (0.42), and mesocortex being intermediate (0.54). Fibers of different crimp type (high, medium or low crimp) were not significantly different from each other with respect to matrix proportion.  相似文献   

2.
Human scalp hairs are comprised of a central cortex enveloped by plate-like cuticle cells. The elongate cortex cells of mature fibres are composed primarily of macrofibrils-bundles of hard-keratin intermediate filaments (IFs) chemically cross-linked within a globular protein matrix. In wool, three cell types (ortho-, meso- and paracortex) contain macrofibrils with distinctly different filament arrangements and matrix fractions, but in human hair macrofibril-cell type relationships are less clear. Here we show that hair macrofibrils all have a similar matrix fraction (∼0.4) and are typically composed of a double-twist architecture in which a central IF is surrounded by concentric rings of tangentially-angled IFs. The defining parameter is the incremental angle increase (IF-increment) between IFs of successive rings. Unlike the wool orthocortex, hair double-twist macrofibrils have considerable inter-macrofibril variation in IF increment (0.05–0.35°/nm), and macrofibril size and IF increment are negatively correlated. Correspondingly, angular difference between central and outer-most IFs is up to 40° in small macrofibrils, but only 5–10° in large macrofibrils. Single cells were observed containing mixtures of macrofibrils with different diameters. These new observations advance our understanding of the nano-level and cell-level organisation of human hair, with implications for interpretation of structure with respect the potential roles of cortex cell types in defining the mechanical properties of hair.  相似文献   

3.
Filaments of wool are heteropolymers formed by interaction of type I and type II intermediate filament (IF) proteins. There are four proteins in each of these two classes. Interaction of the reduced wool IF proteins was studied by two-dimensional electrophoresis which showed that complexes between type I and type II proteins were formed in solution at urea concentrations below 6 M. Complex formation between the carboxymethyl derivatives of wool IF proteins was studied using a filter binding assay in which radio-labelled individual components were allowed to react under various conditions with SDS-PAGE separated components after transfer to nitrocellulose. The results suggested that (i) absolute type specificity of interaction was maintained, (ii) fine specificity, i.e. preferential reaction between specific components is observed, (iii) wool IF proteins (hard keratins) also react, with the same type specificity, with soft keratins isolated from cow snout, (iv) the initial step in the polymerization sequence that leads to filament formation yields heterodimers.  相似文献   

4.
The concept that macrofibril templates, the fibrillar precursor to complete macrofibrils incorporating matrix proteins in trichokeratins, are formed by intracellular anisotropic phase separation of intermediate filaments (IFs), is here developed in detail. The factors affecting structural development, including IF length dispersion, and presence of other macromolecular solutes, are discussed in terms of the statistical thermodynamic models presented over 30 years ago by P.J. Flory and co-workers. The crucial role of pendant IF head groups in controlling IF separation and stabilizing the mesophase is emphasised. In particular, a concerted process of polymerization of unit-length IF precursors coupled with continuous transfer of longer IFs to the anisotropic phase is invoked. Observed structures in differentiated cell lines in mature fibres are rationalised in terms of different possible nematic or double-twist liquid crystalline precursor structures, with varying degrees of anisotropic phase coalescence. The occurrence of rarely observed macromolecular double-twist structures is made plausible by qualitative analysis of mesophase mechanics and reference to alternative structures in other macromolecular mesogens. The model is consistent with, and explains, certain well-known features of mature fibre structure, such as filament-matrix ratios in different cell lines. A few comments relating to the infill of the template by keratin intermediate filament associated proteins (IFAPs) are presented.  相似文献   

5.
Intermediate filaments (IF) have been recognized as ubiquitous components of the cytoskeletons of eukaryotic cells for 25 yr. Historically, the first IF proteins to be characterized were those from wool in the 1960s, when they were defined as low sulfur keratins derived from "microfibrils." These proteins are now known as the type Ia/type IIa trichocyte keratins that constitute keratin IF of several hardened epithelial cell types. However, to date, of the entire class of >40 IF proteins, the trichocyte keratins remain the only ones for which efficient in vitro assembly remains unavailable. In this paper, we describe the assembly of expressed mouse type Ia and type IIa trichocyte keratins into IF in high yield. In cross-linking experiments, we document that the alignments of molecules within reduced trichocyte IF are the same as in type Ib/IIb cytokeratins. However, when oxidized in vitro, several intermolecular disulfide bonds form and the molecular alignments rearrange into the pattern shown earlier by x-ray diffraction analyses of intact wool. We suggest the realignments occur because the disulfide bonds confer substantially increased stability to trichocyte keratin IF. Our data suggest a novel role for disulfide bond cross linking in stabilization of these IF and the tissues containing them.  相似文献   

6.
7.
Microinjection of antibodies to vimentin into fibroblast cell lines causes intermediate filaments (IFs) to build perinuclear caps. We have extended these findings by microinjection of monoclonal antibodies specific for different IF types to non-epithelial cell lines of human origin, which co-express two different IF proteins. Thus GFA and vimentin IgGs have been microinjected in separate experiments into a glioma cell line, desmin and vimentin IgGs into RD cells, and vimentin IgGs into a cell line which co-expresses neurofilaments and vimentin. In all instances, microinjection of a single antibody causes the formation of perinuclear caps in which the two different IF proteins co-localize, suggesting that vimentin and the second IF type present in each cell line localize to the same 10-nm filaments. Immunoelectron microscopy using desmin and vimentin antibodies made in different species and appropriate second antibodies labelled with 5 and 20 nm gold particles confirm this result for RD cells. When Fab' fragments of the vimentin IgGs are microinjected into different cell types, formation of perinuclear caps is observed in immunofluorescence microscopy. In RD cells immunoelectron microscopy shows that the Fab' fragments induce caps which appear less dense than the caps seen after microinjection of IgGs.  相似文献   

8.
The averaged structure of rigor cross-bridges in insect flight muscle is further revealed by three-dimensional reconstruction from 25-nm sections containing a single layer of thin filaments. These exhibit two thin filament orientations that differ by 60 degrees from each other and from myac layer filaments. Data from multiple tilt views (to +/- 60 degrees) was supplemented by data from thick sections (equivalent to 90 degrees tilts). In combination with the reconstruction from the myac layer (Taylor et al., 1989), the entire unit cell is reconstructed, giving the most complete view of in situ cross-bridges yet obtained. All our reconstructions show two classes of averaged rigor cross-bridges. Lead bridges have a triangular shape with leading edge angled at approximately 45 degrees and trailing edge angled at approximately 90 degrees to the filament axis. We propose that the lead bridge contains two myosin heads of differing conformation bound along one strand of F-actin. The lead bridge is associated with a region of the thin filament that is apparently untwisted. We suggest that the untwisting may reflect the distribution of strain between myosin and actin resulting from two-headed, single filament binding in the lead bridge. Rear bridges are oriented at approximately 90 degrees to the filament axis, and are smaller and more cylindrical, suggesting that they consist of single myosin heads. The rear bridge is associated with a region of apparently normal thin filament twist. We propose that differing myosin head angles and conformations consistently observed in rigor embody different stages of the power stroke which have been trapped by a temporal sequence of rigor cross-bridge formation under the constraints of the intact filament lattice.  相似文献   

9.
A tumor promoter phorbol 12-myristate 13-acetate (PMA) induces characteristic reversible changes in the cell shape in certain fibroblastic lines. This reaction to PMA may be regarded as a prototype of reorganizations involving formation of stable cytoplasmic processes. Two specific drugs, Taxol and Colcemid, were used to study the role of microtubules and vimentin-containing intermediate filaments (IF) in the development of PMA-induced reorganizations. A short (I h) exposure to PMA induced formation of processes in the control cells rather than in the Colcemid treated cells having depolymerized microtubules and the IF that collapsed around the nucleus. A longer (3-4 h) exposure to PMA of the colcemid-treated cells induced a partial reversal of the IF collapse; those parts of peripheral lamellae that contained IF were transformed into narrow noncontractile processes. It is suggested that the local interaction of the IF with the actin system is an essential step in the formation of processes from lamellae.  相似文献   

10.
Early electron microscope studies of developing wool and hair established that trichocyte (hard alpha-) keratin fibers have a composite structure in which filaments, subsequently shown to belong to the class of intermediate filaments (IF), were embedded in a matrix of sulfur-rich proteins. These studies also showed that the IF aggregate in a variety of ways to form what have been termed macrofibrils. Assembly into sheets appears to be an important initial factor in aggregation, and in the present contribution the structural principles governing sheet formation are formulated and specific models for the interaction between neighboring IF in a sheet are proposed, based on existing X-ray diffraction, electron microscope, and crosslinking data. All of the trichocyte keratins so far examined by electron microscopy exhibit similar filament/matrix textures and the mechanism of sheet formation proposed here is likely to have general applicability.  相似文献   

11.
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.  相似文献   

12.
Short peptide sequences within the microtubule binding domain of the protein Tau are proposed to be core nucleation sites for formation of amyloid fibrils displaying the paired helical filament (PHF) morphology characteristic of neurofibrillary tangles. To study the structure of these proposed nucleation sites, we analyzed the x-ray diffraction patterns from the assemblies formed by a variety of PHF/tau-related peptide constructs containing the motifs VQIINK (PHF6*) in the second repeat and VQIVYK (PHF6) in the third repeat of tau. Peptides included: tripeptide acetyl-VYK-amide (AcVYK), tetrapeptide acetyl-IVYK-amide (AcPHF4), hexapeptide acetyl-VQIVYK-amide (AcPHF6), and acetyl-GKVQIINKLDLSNVQKDNIKHGSVQIVYKPVDLSKVT-amide (AcTR4). All diffraction patterns showed reflections at spacings of 4.7 A, 3.8 A, and approximately 8-10 A, which are characteristic of an orthogonal unit cell of beta-sheets having dimensions a=9.4 A, b=6.6 A, and c=approximately 8-10 A (where a, b, and c are the lattice constants in the H-bonding, chain, and intersheet directions). The sharp 4.7 A reflections indicate that the beta-crystallites are likely to be elongated along the H-bonding direction and in a cross-beta conformation. The assembly of the AcTR4 peptide, which contains both the PHF6 and PHF6* motifs, consisted of twisted sheets, as indicated by a unique fanning of the diffuse equatorial scattering and meridional accentuation of the (210) reflection at 3.8 A spacing. The diffraction data for AcVYK, AcPHF4, and AcPHF6 all were consistent with approximately 50 A-wide tubular assemblies having double-walls, where beta-strands constitute the walls. In this structure, the peptides are H-bonded together in the fiber direction, and the intersheet direction is radial. The positive-charged lysine residues face the aqueous medium, and tyrosine-tyrosine aromatic interactions stabilize the intersheet (double-wall) layers. This particular contact, which may be involved in PHF fibril formation, is proposed here as a possible aromatic target for anti-tauopathy drugs.  相似文献   

13.
Solid-state NMR methods employing (2)H NMR and geometric analysis of labeled alanines (GALA) were used to study the structure and orientation of the transmembrane alpha-helical peptide acetyl-GWW(LA)(8)LWWA-amide (WALP23) in phosphatidylcholine (PC) bilayers of varying thickness. In all lipids the peptide was found to adopt a transmembrane alpha-helical conformation. A small tilt angle of 4.5 degrees was observed in di-18:1-PC, which has a hydrophobic bilayer thickness that approximately matches the hydrophobic length of the peptide. This tilt angle increased slightly but systematically with increasing positive mismatch to 8.2 degrees in di-C12:0-PC, the shortest lipid used. This small increase in tilt angle is insufficient to significantly change the effective hydrophobic length of the peptide and thereby to compensate for the increasing hydrophobic mismatch, suggesting that tilt of these peptides in a lipid bilayer is energetically unfavorable. The tilt and also the orientation around the peptide axis were found to be very similar to the values previously reported for a shorter WALP19 peptide (GWW(LA)(6)LWWA). As also observed in this previous study, the peptide rotates rapidly around the bilayer normal, but not around its helix axis. Here we show that these properties allow application of the GALA method not only to macroscopically aligned samples but also to randomly oriented samples, which has important practical advantages. A minimum of four labeled alanine residues in the hydrophobic transmembrane sequence was found to be required to obtain accurate tilt values using the GALA method.  相似文献   

14.
P Fortier  S Suei  L Kreplak 《PloS one》2012,7(7):e41814
Mammalian appendages such as hair, quill and wool have a unique structure composed of a cuticle, a cortex and a medulla. The cortex, responsible for the mechanical properties of the fibers, is an assemblage of spindle-shaped keratinized cells bound together by a lipid/protein sandwich called the cell membrane complex. Each cell is itself an assembly of macrofibrils around 300 nm in diameter that are paracrystalline arrays of keratin intermediate filaments embedded in a sulfur-rich protein matrix. Each macrofibril is also attached to its neighbors by a cell membrane complex. In this study, we combined atomic force microscopy based nano-indentation with peak-force imaging to study the nanomechanical properties of macrofibrils perpendicular to their axis. For indentation depths in the 200 to 500 nm range we observed a decrease of the dynamic elastic modulus at 1 Hz with increasing depth. This yielded an estimate of 1.6GPa for the lateral modulus at 1 Hz of porcupine quill's macrofibrils. Using the same data we also estimated the dynamic elastic modulus at 1 Hz of the cell membrane complex surrounding each macrofibril, i.e., 13GPa. A similar estimate was obtained independently through elastic maps of the macrofibrils surface obtained in peak-force mode at 1 kHz. Furthermore, the macrofibrillar texture of the cortical cells was clearly identified on the elasticity maps, with the boundaries between macrofibrils being 40-50% stiffer than the macrofibrils themselves. Elasticity maps after indentation also revealed a local increase in dynamic elastic modulus over time indicative of a relaxation induced strain hardening that could be explained in term of a α-helix to β-sheet transition within the macrofibrils.  相似文献   

15.
Cell architecture is largely based on the interaction of cytoskeletal proteins, which include intermediate filaments (IF), microfilaments, microtubules, as well as their type-specific membrane-attachment structures and associated proteins. In order to further our understanding of IF proteins and to address the fundamental issue whether different IF perform unique functions in different tissues, we expressed a desmin transgene in the basal epidermis of mice. Ectopic expression of desmin led to the formation of an additional, keratin-independent IF cytoskeleton and did not interfere with the keratin-desmosome interaction. We show that ectopic expression of a type III IF protein in basal keratinocytes did not interfere with the normal epidermal architecture and the program of terminal differentiation. This demonstrated that keratinocytes suffered no obvious detrimental effects from extra desmin filaments in their cytoplasm. In addition, we asked whether stable expression of desmin could rescue K5 null mice, which served as a model for severe EBS. Transgenic mice ectopically expressing desmin in the basal layer were mated with K5 heterozygous deficient animals to generate desmin rescue mice and analysed. In summary, our study support the notion that the different IF like desmin or keratins composing a IF network in vivo are central to cytoskeletal architecture and design in cells.  相似文献   

16.
Microinjection of the purified catalytic subunit of the cAMP-dependent protein kinase (A-kinase) into living rat embryo fibroblasts leads to dramatic changes in vimentin intermediate filament (IF) organization, involving the collapse of the filaments into tight bundles. In some cell types, this rearrangement of the IF proceeds further, leading to an apparent loss of filament integrity, resulting in a punctate staining pattern throughout the cytoplasm. Both these types of IF rearrangement are fully reversible, and similar to structural changes previously described for IF during mitosis. As shown by electron microscopy, in rat embryo fibroblasts these changes in IF structure do not involve the loss of the 10-nM filament structure but instead correspond to the bundling together of 25 or more individual filaments. Metabolic pulse labeling of injected cells reveals that accompanying these changes in IF organization is a dramatic increase in vimentin phosphorylation which appears maximal when the IF are fully rearranged. However, this increase in IF phosphorylation is not accompanied by any significant increase in soluble vimentin. Analysis of the sites of phosphorylation on vimentin from injected cells by either V8 protease cleavage, or two-dimensional tryptic peptide mapping, revealed increased de novo phosphorylation of two vimentin phosphopeptides after microinjection of A-kinase. These data strongly suggest that the site-specific phosphorylation of vimentin by A-kinase is responsible for the dynamic changes in IF organization observed after injection of the kinase into living cells, and may be involved in similar rearrangement of the IF previously described during mitosis or after heat shock.  相似文献   

17.
18.
Cytosolic and mitochondrial pig aspartate aminotransferases (cAAT and mAAT) and chicken cAAT were oriented in a compressed slab of polyacrylamide gel. Linear dichroism (LD) spectra of the pyridoxal and pyridoxamine forms of AATs and of complexes of the pyridoxal form with substrate analogues have been recorded. The tilt angles of the coenzyme at the intermediary steps of the transamination reaction have been calculated on the basis of reduced LD values (delta A/A), atomic coordinates of the coenzyme and directions of the transition dipole moments in the coenzyme ring. It was assumed that rotation of the coenzyme ring occurs around the C2-C5 axis in all cases except the enzyme complex with glutarate: in the latter case the direction N1-C4 was assumed to be a rotation axis. It has been found that formation of the enzyme complex with glutarate and protonation of the internal aldimine induce dissimilar reorientations of the coenzyme. As a result of protonation, the coenzyme tilts by 27 degrees in cAAT and 13 degrees in mAAT. Formation of the external aldimine with 2-methylaspartate is accompanied by tilting of the coenzyme ring by 44 degrees in cAAT and 39 degrees in mAAT. For the quinonoid complex with erythro-3-hydroxyaspartate, the tilt angles were found to be 63 degrees in cAAT and 53 degrees in mAAT. It was inferred that the basic features of the active site dynamics are similar in three AATs studied. The differences in the coenzyme tilt angles between cAAT and mAAT might be linked to catalytic peculiarities of the isoenzymes.  相似文献   

19.
The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d(GGCAAGAAACGG)/d(CCGTTTCTTGCC), with an AT to GC transition in the center of the A-tract. This structure has no negative inclination in most of the bases within the A-tract, resulting in a bend of only 9 degrees. When ligated in phase, the control sequence has nearly normal mobility in gel electrophoresis experiments.  相似文献   

20.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号