首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first report on the ultrastructural pattern of distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in endothelial cells, using the rabbit aorta, and its colocalization with the neuronal isoform (type I) of nitric oxide synthase. About 30% of the endothelial cells showed a positive reaction for NADPH-d compared to about 6% for nitric oxide synthase immunoreactivity. Simultaneous double histochemical-immunocytochemical labelling procedures indicate that all of the cells displaying nitric oxide synthase-positive reactivity also contained NADPH-d; the remainder of NADPH-d-positive endothelial cells were negative for this isoform of nitric oxide synthase. Nitric oxide synthase-immunogold labelling was mostly associated with free ribosomes, while NADPH-d activity was distributed largely in patches in the cytoplasm and in association with the cell membrane.  相似文献   

2.
The distribution of neurons containing NADPH-diaphorase (NADPH-d) activity and nitric oxide synthase-like immunoreactivity (NOS-LI) in the canine pyloric and ileocolonic sphincters was studied. Cells within the myenteric and submucosal ganglia were positive for NADPH-d. These cells generally had the morphology of Dogiel type-I enteric neurons, however, there was some diversity in the morphology of NADPH-d-positive neurons in the myenteric plexus of the pylorus. Intramuscular ganglia were observed in both sphincters, and NADPH-d was found in a sub-population of neurons within these ganglia. Dual staining with an antiserum raised against nitric oxide synthase (NOS) demonstrated that almost all cells with NOS-LI were also NADPH-d positive. Varicose fibers within ganglia and within the circular and longitudinal muscle layers also possed NOS-LI and NADPH-d activity. Dual staining with anti-VIP antibodies showed that some of the NADPH-d-positive cells in the myenteric and submucosal ganglia also contained VIP-LI, but all VIP-LI-positive cells did not express NADPH-d activity. These data are consistent with recent physiological studies suggesting that nitric oxide serves as an inhibitory neurotransmitter in the pyloric and ileocolonic sphincters. The data also suggest that VIP is expressed in a sub-population of NADPH-d-positive neurons and may therefore act as a co-transmitter in enteric inhibitory neurotransmission to these specialized muscular regions.  相似文献   

3.
In this study, we wished to clarify the distribution and co-localization of nitric oxide synthase and NADPH-diaphorase (NADPH-d) in nerve cells, nerve fibres and parenchymal cells in exocrine and endocrine pancreas, and to assess the influence of fixation on the staining pattern obtained. For this purpose, we applied nitric oxide synthase immunocytochemistry and NADPH-d histochemistry to rat and human pancreas under different fixation conditions. Antibodies to neuronal and endothelial nitric oxide synthase were similarly applied. We found complete co-localization of neuronal nitric oxide synthase and NADPH-d in ganglion cells, and in nerve fibres around acini, excretory ducts, blood vessels and in islets of Langerhans of rat and human pancreas. Immunoreactivity for endothelial nitric oxide synthase was co-localized with NADPH-d in endothelial cells. However, in NADPH-d reactive islet and ductal epithelial cells we could detect neither brain nor endothelial nitric oxide synthase immunoreactivity with any fixation protocol applied. There were marked differences in NADPH-d staining of both neurons and parenchymal cells under different fixation conditions. These results indicate the existence of different types of NADPH-d, which are associated or not associated with nitric oxide synthase(s), and which are differently influenced by various fixation procedures in rat and human pancreas.  相似文献   

4.
Nitric oxide synthase (NOS) is responsible for the biological production of nitric oxide (NO) in several organs, including those of the reproductive tract. We investigated potential changes in NADPH-diaphorase (NADPH-d) activity (marker for NOS activity) and the presence and distribution of NOS in the porcine oviduct. Tissues were obtained from gilts (n=16) on different days of the estrous cycle. One fallopian tube was used for histo- and immunohistochemistry and the other for Western blotting analysis. NADPH-d activity was much higher in the epithelium of the mucosa than in the myosalpinx. The highest activity of NADPH-d was always found in the epithelium of the isthmus. The intensity of the reaction (arbitrary units +/- SEM) in isthmus epithelium increased from the postovulatory period until early proestrus (96.2 +/- 11.2) and then gradually decreased. The lowest intensity of NADPH-d reaction in the epithelium of the isthmus was seen at estrus (58.4 +/- 7.7). The most intense NADPH-d activity in myosalpinx of all parts of the oviduct was observed at the postovulatory stage of the estrous cycle (isthmus 38.3 +/- 2.5; ampulla 35.6 +/- 4.2; infundibulum 24.7 +/- 0.8) and then decreased during the remaining stages of the estrous cycle (p< 0.001). The presence of endothelial NOS (eNOS) was detected in epithelial cells of mucosa and in endothelium of vascular tissues and myosalpinx during all studied days of the estrous cycle. The positive reaction for inducible NOS (iNOS) was restricted only to the endothelium of lymph vessels and some blood vessels. Because our Western blotting analysis revealed that porcine oviduct contains eNOS but not iNOS, we suggest that eNOS is the main isoform of NOS expressed in the porcine oviduct. We concluded that the different activity of NADPH-d in the various regions of the oviduct, accompanied by changes in its activity during the course of the estrous cycle, could indicate an important role of NO in regulation of tubal function.  相似文献   

5.
Nitric oxide (NO), a highly reactive free radical is involved in vasodilation, neurotransmission, hormone secretion, and reproduction. Since all known nitric oxide synthase (NOS) isoforms possess NADPH-diaphorase (NADPH-d) activity, NADPH-d histochemistry was used as a commonly accepted procedure for NOS identification. The aim of our study was to determine the cellular localization of NADPH-d, eNOS, and iNOS in the porcine uterus and the correlation between NADPH-d and NOS activity in the early, middle, late luteal, and follicular phase of the estrous cycle. Light-microscopic observations of the sections revealed the differential expression of the NADPH-d in the analyzed stages of the estrous cycle. The most intense staining was observed in the luminal epithelium in the late luteal phase and in some groups of the endometrial glands in all studied stages. Positive reaction was also found in the endothelial cells of blood vessels and in the myometrium itself. Immunostaining for eNOS was observed in the luminal and glandular epithelium in all studied stages, but no clear fluctuations were observed. The endothelium of both endometrial and myometrial blood vessels displayed pronounced eNOS immunostaining. Strong iNOS staining was observed in the luminal epithelium in the late luteal and follicular phase and in selected groups of endometrial glands. Thus, only NADPH-d and iNOS undergo cyclic changes in the studied stages of the estrous cycle. The differential expression of NADPH-d/NOS in the porcine uterine horn during the estrous cycle suggests a role for NO in modulating uterine function.  相似文献   

6.
The nitric oxide/guanosine 3',5'-cyclic monophosphate pathway plays an essential role in mediating pulmonary vasodilation at birth. Small resistance arteries in the fetal lung are vessels of major significance in the regulation of pulmonary vascular tone. The present study is to determine that type I nitric oxide synthase (NOS-I) is present in ovine fetal pulmonary vasculature and that NOS-I is distributed heterogeneously in ovine fetal pulmonary circulation. We used reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and NOS-I immunohistochemistry to localize NOS-I in fetal sheep lungs and showed a colocalization for NADPH-d activity with NOS-I immunoreactivity. Strong NOS-I immunoreactivity was observed exclusively in the endothelium of the terminal bronchiole and respiratory bronchiole-associated arteries. As a comparison, adult sheep lung did not show positive immunoreactivity in the pulmonary endothelium. NOS-I was absent in the umbilical or systemic arteries from the ovine fetus, whereas abundant NOS-III immunoreactivity was present in these arteries. We conclude that NOS-I is present uniquely in the ovine fetal pulmonary circulation as opposed to the adult pulmonary or the fetal systemic circulation. NOS-I is distributed heterogeneously in the ovine pulmonary vasculature. We speculate that NOS-I plays an active role in the regulation of perinatal pulmonary circulation.  相似文献   

7.
8.
Summary Constitutive endothelial nitric oxide synthase (NOS III) expression during the oestrous cycle was mapped immunocytochemically on 5 μm-thick paraffin sections of rat female reproductive organs. Ovarian NOS III immunoreactivity increased with follicular maturation (strongest in dioestrus corpora lutea), suggesting that nitric oxide may regulate folliculogenesis and luteal functions. Oviductal NOS III, localized in mucosal epithelium and muscular wall, was maximal during pro-oestrus and oestrus, suggesting that nitric oxide may impart periovulatory quiescence for reception, retention and fertilization of ovulated oocytes. Uterine NOS III, localized in endometrial and glandular epithelium, and in myometrial smooth muscle cells, was abundantly expressed during pro-oestrus and oestrus. The peri-implantation period in pregnant rats corresponds to the periovulatory period and the elevated NOS, and thus nitric oxide may provide uterine relaxation to facilitate embryo implantation following fertilization. Cervical NOS III, localized in the mucus-secreting epithelium and smooth muscle cells, exhibited enzyme abundance during pro-oestrus and oestrus, probably indicating cervical preparation to facilitate sperm entry following mating. Vaginal NOS III, found in the stratified squamous epithelial lining and in smooth muscle cells, was maximal during oestrus and pro-oestrus, suggesting that nitric oxide may stimulate vaginal secretions. Differential expression of NOS III by different reproductive organs during the oestrus cycle suggests a role for nitric oxide in modulating reproduction.  相似文献   

9.
Heme oxygenase (HO)/carbon monoxide (CO) and nitric oxide synthase (NOS)/nitric oxide (NO) systems are involved in sensory information processing. The present study was undertaken to examine the distribution of HO-2 and NOS in the spinal trigeminal nucleus (STN) of the rat, using histochemistry and immunohistochemistry. Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining was found that NADPH-d activity was more prominent in the nucleus caudalis (Vc) and the dorsomedial subdivision of the nucleus oralis (Vo) than in other spinal trigeminal regions. Immunohistochemistry for HO-2 revealed that HO-2 staining neurons distributed extensively, which intensity was higher in the rostral than caudal part of the STN. The colocalization of NADPH-d and HO-2 was mainly confined in the Vc. The expression and distribution of NADPH-d and HO-2 suggest that NO and CO are likely neurotransmitters and might function in the processing orofacial signal in the STN together.  相似文献   

10.
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18(th) gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.  相似文献   

11.
Lazarov N  Dandov A 《Acta anatomica》1998,163(4):191-200
The trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN) neurons are involved in the transmission of orofacial sensory information. The presence of nitric oxide (NO), a putative neurotransmitter substance in the nervous system, was examined in the cat TrG and MTN using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry. In the TrG, where the majority of the trigeminal primary afferent perikarya are located, most of the intensely NADPH-d/ NOS-stained cells were small in size and distributed randomly throughout the ganglion. The medium-sized neurons were moderately stained. A plexus of pericellular varicose arborizations around large unstained ganglion cells and densely stained fibers in-between could also be observed. In the caudal part of the MTN, both NADPH-d activity and NOS immunoreactivity was present in MTN neurons. In addition, a few scattered NADPH-d/NOS-containing neurons were found in the mesencephalic-pontine junction part of the nucleus. In contrast, only nerve fibers and their terminals were present at a more rostral level in the mid- and rostral MTN. MTN neuronal perikarya were enveloped in fine basket-like NADPH-d/ NOS-positive networks. Differential expression patterns of NOS and its marker NADPH-d suggest that trigeminal sensory information processing in the cat MTN is controlled by nitrergic input through different mechanisms. We introduce the concept that NO can act as a neurotransmitter in mediating nociceptive and proprioceptive information from periodontal mechanoreceptors but may also participate in modulating the activity of jaw-closing muscle afferent MTN neurons.  相似文献   

12.
This is the first report on the ultrastructural distribution of nitric oxide synthase and endothelin immunoreactivities in the coronary and pulmonary arteries of newborn Wistar rats. The distribution of nitric oxide synthase and endothelin was investigated using pre-embedding peroxidase-antiperoxidase immunocytochemistry. In both arteries examined, positive labelling for nitric oxide synthase was localized both in the endothelium and smooth muscle, whereas positive labelling for endothelin was localized in the endothelium exclusively. In the coronary artery, approximately 80% and 55% of the endothelial cells examined were positive for nitric oxide synthase and endothelin, respectively, whereas in the pulmonary artery, 77% and 60% of the endothelial cells were positive for nitric oxide synthase and endothelin, respectively. These findings indicate that nitric oxide synthase and endothelin are colocalized in some of the endothelial cells of the newborn rat. In the endothelium, nitric oxide synthase and endothelin immunoreactivities were distributed throughout the cell cytoplasm and in association with the membranes of intracellular organelles. In smooth muscle, a relationship of nitric oxide synthase immunoreactivity to endoplasmic reticulum was observed in the pulmonary artery. In summary, in the newborn rat, endothelial cells of the coronary and pulmonary artery are rich in nitric oxide synthase (neuronal isoform) and endothelin, and it is suggested therefore that they may be substantially involved in vasomotor control of the cardiac and pulmonary circulation during early stages of postnatal development.  相似文献   

13.
By means of NADPH-diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry, we demonstrate that considerable numbers of NADPH-d-positive neurons are distributed throughout the canine superior cervical ganglion (SCG). These neurons also show NOS immunoreactivity. This finding indicates that NADPH-d histochemistry, a simple and reliable technique, can be used as a reliable marker of NOS activity in the sympathetic innervation of canine head and neck. The present findings suggest that the participation of nitric oxide in the SCG differs greatly between species.  相似文献   

14.
The buffalo is one of the few domestic animals that has a seasonal mating cycle, influenced by the photoperiod. It is known that the photoperiod regulates gonadal function probably via the pineal and/or hypothalamus-pituitary axis. Moreover, the hypothalamus (melatonin) and gonads influence the production of the signaling transmitter nitric oxide (NO), suggesting that the NO may have an important role in the regulation of gonadotropin-releasing hormone secretion. This further suggests the hypothesis that NO in the epididymis has an important role in the maturation of spermatozoa and their motility and posterior fertilization capacity. The aim of the present study is to investigate the seasonal variations in the morphology of the epididymis by means histochemical and immunocytochemical techniques. We used the NADPH-d, nitric oxide synthase (NOS) I and NOS III to clarify the relationship between epididymis function and NO signaling activity. The results of this work show that NO is present in the caput of epididymis during short photoperiods, i.e., periods of maximum gonadal activity (winter) and absent during long photoperiods, i.e., periods of gonadal regression according to the previously described role of NO in spermatozoa capacitation and motility in the caput epididymis.  相似文献   

15.
We investigated the enzymes involved in the NADPH-diaphorase (d) reaction in the rat and pig bladder urothelium. The urothelial cell layer displayed intense and uniform NADPH-d activity. Preincubation with the flavoprotein inhibitor diphenyleneiodionium chloride (DPI) and the alkaline phosphatase inhibitor levamisole concentration-dependently decreased the urothelial NADPH-d activity. Immunoreactivities to neuronal (n), endothelial (e), or inducible (i) nitric oxide synthase (NOS) were not detected in rat or pig urothelial cells. In rats, the urothelium was uniformly immunoreactive for NADPH cytochrome P450 reductase, whereas the pig urothelium displayed inconsistent labeling. In lipopolysaccharide (LPS)-treated rats, the bladder urothelium showed positive iNOS immunoreactivity. The iNOS labeling was found predominantly in cells located in the basal layer of the urothelium. In the pig bladder mucosa, a Ca2+-dependent NOS activity was evident in cytosolic and particulate fractions that was quantitatively comparable to the NOS activity found in the smooth muscle. In ultrastructural studies of urothelial cells, NADPH-d reaction products were found predominantly on membranes of the nuclear envelope, endoplasmatic reticulum and mitochondria. In conclusion, NADPH-d staining of the urothelium cannot be taken as an indicator for the presence of constitutively expressed NOS. Activity of alkaline phosphatase and cytochrome P450 reductase may account for part of the NADPH-d reaction in urothelial cells. However, LPS treatment of rats caused expression of iNOS in urothelial cells.  相似文献   

16.
The NADPH-diaphorase (NADPH-d) staining method is widely used in the investigation of both the central and peripheral nervous systems. Neuronal nitric oxide synthase (nNOS) has previously been shown to be responsible for the NADPH-d activity in neurons. However, NADPH-d activity does not always fully represent the enzyme nNOS. We investigated the distribution of NADPH-d activity and nNOS protein in the rabbit spinal cord for all groups of neurons and Rexed's laminae. In most laminae the distribution of NADPH-d activity was identical to nNOS immunoreactivity. Both were present in the dorsal horn and in pericentral areas of the spinal cord, but some differences existed. The superficial part of the dorsal horn (laminae I-III) stained more intensely for NADPH-d than for nNOS. However, the most prominent difference was seen in the lateral part of the dorsal horn--the lateral collateral pathway (LCP). The LCP stained strongly for NADPH-d activity, while nNOS staining was absent. Although there is an excellent correlation between NADPH-d staining and nNOS immunohistochemical staining in the spinal cord in general, the presence of staining differences necessitates the use of immunohistochemistry for some specialized applications.  相似文献   

17.
NADPH-diaphorase (NADPH-d) and an inducible type of nitric oxide synthase (iNOS) were demonstrated in porcine ovaries after unilateral infusion of bacteria into the hilus of an ovary. In group I one ml of saline was infused into the hilus of each ovary from the 15th day to the 19th day of the estrous cycle. In group II one ml of bacterial suspension (10(9) colony forming units of Escherichia coli, Staphylococcus aureus and Corynebacterium pyogenes, in a proportion 1:1:1, respectively) in saline was infused into the hilus of one ovary on days corresponding to those of the control group (gr. I), whereas saline was infused into the contralateral ovary. The ovaries were collected on the 7th day of the next estrous cycle. In the bacteria-treated ovary, the activity of NADPH-d was higher in the endothelium of blood vessels, corpora lutea and follicular walls in comparison to that observed in the respective structures of the contralateral ovary. The highest activity of NADPH-d was found in the vascular endothelium in the bacteria-infused ovary. Vascular smooth muscle cells found in both ovaries of the bacteria-treated gilts were more intensely stained for NADPH-d than those in control animals. After bacteria administration, the intensity of NADPH-d reaction in all the structures of both ovaries in group II was higher than in control group. The strongest immunostaining for iNOS was observed in all structures of the bacteria-infused ovary. In the contralateral ovary, iNOS-immunoreactivity was weaker but still stronger than that in control group. The present results revealed that infusions of bacteria into the hilus of one ovary enhanced the activity of NADPH-d and immunoreactivity for iNOS in both porcine ovaries. However, the activity of both enzymes was higher in the bacteria-infused ovary than in the contralateral one. These data suggest that locally synthesized NO can mediate an inflammatory effect of bacteria in the porcine ovaries.  相似文献   

18.
The present study was undertaken to examine the localization patterns of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) by enzyme histochemistry and neuronal nitric oxide synthase (NOS) by immunohistochemistry in the vomeronasal organ of rat from postnatal day 0 for 8 weeks (adult). Nicotinamide adenine dinucleotide phosphate-diaphorase activity was not observed in the sensory epithelium of the vomeronasal organ at postnatal day 0 (the day of birth) and at day 1. At postnatal day 2, NADPH-d activity was observed in several vomeronasal neurons and on the surface of the sensory epithelium. From 25 days through adulthood, the number of vomeronasal neurons having NADPH-d activity increased gradually. On the other hand, neuronal NOS immunoreactivity was not observed in the sensory epithelium of the vomeronasal organ in newborns or in the adult rat. In this study, it is suggested that the nitric oxide pathway in the sensory epithelium of the vomeronasal organ comes into play beyond postnatal day 3. Moreover, it was found that NADPH-d and neuronal NOS are not colocalized in the sensory epithelium of the developing rat vomeronasal organ.  相似文献   

19.
The changes in the activity of NADPH-d and energy metabolism enzymes, lactate dehydrogenase (LDG) and succinate dehydrogenase (SDG), in the neurons of splanchnic and myenteric plexus (SP and MP, respectively), induced by 1-h-long ischemization of a part of the small intestine, were studied using cytophotometric technique; the measurements were performed under conditions when synthesis of nitric oxide (NO) was either blocked or activated. The activity of NADPH-d, SDG, and LDG in MP neurons was shown to be enhanced by ischemia. In SP neurons, the LDG activity increased, while the NADPH-d and SDG activities did not change. The blockade of NO synthesis with nitro-L-arginine methyl ester was followed by a decrease in the NADPH-d level in SP and MP neurons, but was maintained at a level lower than the control one during ischemia. Administration of L-arginine, the NO precursor, increased NADPH-d activity in MP and SP neurons, while at ischemization of the intestine this activity remained at a level higher than in the control. It is concluded that NO-ergic mechanisms (mostly at the MP level) are significantly involved in regulation of the functions of the small intestine in ischemia.  相似文献   

20.
Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号