首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about 1.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodecyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.  相似文献   

2.
A new and improved procedure has been developed for the isolation of intact DNA genomes from purified vaccinia virions. Purified virions are layered on a neutral sucrose gradient containing sodium dodecyl sulfate, 2-mercaptoethanol and sodium chloride at neutral pH. Intact viral DNA free from protein and fully sensitive to DNase I is rapidly released from the virions.  相似文献   

3.
Adult diarrhea rotavirus (ADRV) is a newly identified strain of noncultivable human group B rotavirus that has been epidemic in the People's Republic of China since 1982. We have used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western (immuno-) blot analysis to examine the viral proteins present in the outer and inner capsids of ADRV and compared these with the proteins of a group A rotavirus, SA11. EDTA treatment of double-shelled virions removed the outer capsid and resulted in the loss of three polypeptides of 64, 61, and 41, kilodaltons (kDa). Endo-beta-N-acetylglucosaminidase H digestion of double-shelled virions identified the 41-kDa polypeptide as a glycoprotein. CaCl2 treatment of single-shelled particles removed the inner capsid and resulted in the loss of one polypeptide with a molecular mass of 47 kDa. The remaining core particle had two major structural proteins of 136 and 113 kDa. All of the proteins visualized on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were antigenic by Western blot analysis when probed with convalescent-phase human and animal antisera. A 47-kDa polypeptide was most abundant and was strongly immunoreactive with human sera, animal sera raised against ADRV and against other group B animal rotaviruses (infectious diarrhea of infant rat virus, bovine and porcine group B rotavirus, and bovine enteric syncytial virus) and a monoclonal antibody prepared against infectious diarrhea of infant rat virus. This 47-kDa inner capsid polypeptide contains a common group B antigen and is similar to the VP6 of the group A rotaviruses. Human convalescent-phase sera also responded to a 41-kDa polypeptide of the outer capsid that seems similar to the VP7 of group A rotavirus. Other polypeptides have been given tentative designations on the basis of similarities to the control preparation of SA11, including a 136-kDa polypeptide designated VP1, a 113-kDa polypeptide designated VP2, 64- and 61-kDa polypeptides designated VP5 and VP5a, and several proteins in the 110- to 72-kDa range that may be VP3, VP4, or related proteins. The lack of cross-reactivity on Western blots between antisera to group A versus group B rotaviruses confirmed that these viruses are antigenically quite distinct.  相似文献   

4.
In the course of experiments on the role of the COOH-terminal residues in pancreatic deoxyribonuclease, we undertook to ascertain whether the presence of sodium dodecyl sulfate would render the normally unavailable terminus susceptible to hydrolysis by carboxypeptidase A. When DNase A is dissolved in 0.005% sodium dodecyl sulfate the protein becomes enzymically inactive when assayed against DNA in the same sodium dodecyl sulfate concentration. The loss of activity caused by treatment with sodium dodecyl sulfate for 1 hour at 45 degrees can be fully restored if the detergent-containing solution is diluted 10-fold into 6 M guanidinium chloride and then 10-fold into a pH 7.0 buffer, 10 mM in CaCl2, prior to a 100-fold dilution for assay. The presence of Ca2+ is essential for the refolding process. If the same degree of dilution is made into sodium dodecyl sulfate-free buffer without the guanidinium chloride step, there is very little reversal of the inactivation. An almost complete loss of regenerable activity is caused by 1 hour of digestion by carboxypeptidase at 45 degrees in the presence of 0.03% sodium dodecyl sulfate. Although up to 6 amino acid residues can be removed from the COOH terminus, the loss of activity can be correlated with the removal of either 1 or 2 amino acid residues (-Leu-Thr) from the COOH-terminal sequence. Thus, DNase A is one of the several enzymes in which residues at the COOH terminus are essential to the active conformation. If the enzyme minus 2 to 6 terminal residues was mixed with a 15-residue COOH-terminal peptide (obtained by cyanogen bromide cleavage), only about 2% activity could be regenerated.  相似文献   

5.
A method based on cold ethyl alcohol fractionation at different pH levels and ionic strengths and on gel filtration on a Sephadex G-200 column was used to concentrate and purify lysozyme from the culture supernatant fluid of Staphylococcus aureus strain 524. The final, nondialyzable product exhibited a 163-fold rise in specific activity over that of the starting material. Staphylococcal lysozyme is a glycosidase which splits N-acetylamino sugars from the susceptible substrate. Staphylococcal lysozyme was shown to be similar to egg white lysozyme in its optimal temperature for reaction, optimal pH, activation by NaCl and Ca(++) ions, inhibition by sodium citrate and ethylenediaminetetraacetate, and inactivation by Cu(++) ions and sodium dodecyl sulfate. It differs from the egg white lysozyme in its temperature susceptibility range (staphylococcal lysozyme is inactivated at 56 C). It acts on whole cells and cell walls of Micrococcus lysodeikticus, murein from S. aureus 524, and cell walls of S. epidermidis Zak. The last substrate was not susceptible to the action of egg white lysozyme in the test system used. The mechanism of action of staphylococcal lysozyme seems to be analogous to that of egg white lysozyme; however, the biological specificity of the two enzymes may be different.  相似文献   

6.
Simultaneous bile duct ligation and colchicine injection (2 mg/kg body weight) in rats caused a remarkable induction of alkaline phosphatase in the liver. Concomitantly, a marked elevation of the enzyme activity occurred in the serum, and three activity peaks (peaks I, II, and III) were separated by Sephadex G-200 gel filtration. By several criteria for alkaline phosphatase isoenzymes it was determined that the liver-derived enzyme was distributed in peak I (30% of total serum activity) as a vesicle-bound form and in peak II (65%) as a soluble form, while the intestinal enzyme was contained in peak III (5%). The serum alkaline phosphatase in peaks I and II was compared with the liver enzyme extracted from plasma membrane with n-butanol. Under non-reducing conditions, the soluble form of peak II showed an electrophoretic mobility different from that of the liver enzyme; in the presence of sodium dodecyl sulfate the serum-soluble form migrated a little more slowly than the liver one, while in the presence of Triton X-100 the former migrated much faster than the latter. The sedimentable fraction of peak I was found to contain two forms corresponding to the serum-soluble and liver-membranous forms. Neuraminidase treatment of these two forms reduced their mobilities but did not abolish the relative difference in their mobilities on gel electrophoresis in the presence of either Triton X-100 or sodium dodecyl sulfate. Under reducing conditions, however, each form (which was dissociated into single subunits) migrated with an identical mobility on sodium dodecyl sulfate gel electrophoresis. These results suggest that the hepatic alkaline phosphatase exists as conformationally different forms in the serum and the liver membrane (even solubilized), but the difference is no longer preserved after their denaturation into subunits.  相似文献   

7.
The effect of detergents on the stability of enteric viruses was found to be highly dependent on pH. This was demonstrated primarily with two ionic detergents, sodium dodecyl sulfate (an anionic detergent) and dodecyltrimethylammonium chloride (a cationic detergent). Both detergents were shown to be potent virucidal agents for reovirus, but the effects of sodium dodecyl sulfate were minimal near neutrality and much more pronounced at low than at high pH values. Dodecyltrimethylammonium chloride was extremely virucidal at high pH's but had little observable effect on reovirus stability at low pH values. In contrast, both detergents protected enteroviruses against heat at neutral and alkaline pH's. However, as was found with reovirus, sodium dodecyl sulfate was extremely virucidal at pH values below 5, even when the virus samples were incubated in ice. At different pH's the effects of detergents on the stabilities of coliphages T4, f1, and Q beta were qualitatively similar to those found with reovirus. Differences in viral stability in these experiments appeared to be due to the effects of pH on the ionic states of the viral capsid proteins.  相似文献   

8.
The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation.  相似文献   

9.
The effect of detergents on the stability of enteric viruses was found to be highly dependent on pH. This was demonstrated primarily with two ionic detergents, sodium dodecyl sulfate (an anionic detergent) and dodecyltrimethylammonium chloride (a cationic detergent). Both detergents were shown to be potent virucidal agents for reovirus, but the effects of sodium dodecyl sulfate were minimal near neutrality and much more pronounced at low than at high pH values. Dodecyltrimethylammonium chloride was extremely virucidal at high pH's but had little observable effect on reovirus stability at low pH values. In contrast, both detergents protected enteroviruses against heat at neutral and alkaline pH's. However, as was found with reovirus, sodium dodecyl sulfate was extremely virucidal at pH values below 5, even when the virus samples were incubated in ice. At different pH's the effects of detergents on the stabilities of coliphages T4, f1, and Q beta were qualitatively similar to those found with reovirus. Differences in viral stability in these experiments appeared to be due to the effects of pH on the ionic states of the viral capsid proteins.  相似文献   

10.
The kinetics of inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine were studied at 5 degrees C with a purified preparation of single virions and a preparation of cell-associated virions. Inactivation of the virus preparations with chlorine and chlorine dioxide was studied at pH 6 and 10. The monochloramine studies were done at pH 8. With 0.5 mg of chlorine per liter at pH 6, more than 4 logs (99.99%) of the single virions were inactivated in less than 15 s. Both virus preparations were inactivated more rapidly at pH 6 than at pH 10. With chlorine dioxide, however, the opposite was true. Both virus preparations were inactivated more rapidly at pH 10 than at pH 6. With 0.5 mg of chlorine dioxide per liter at pH 10, more than 4 logs of the single-virus preparation were inactivated in less than 15 s. The cell-associated virus was more resistant to inactivation by the three disinfectants than was the preparation of single virions. Chlorine and chlorine dioxide, each at a concentration of 0.5 mg/liter and at pH 6 and 10, respectively, inactivated 99% of both virus preparations within 4 min. Monochloramine at a concentration of 10 mg/liter and at pH 8 required more than 6 h for the same amount of inactivation.  相似文献   

11.
Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889-897, 1978). The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium.  相似文献   

12.
Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889-897, 1978). The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus were greatly altered by changes in the pH of the medium.  相似文献   

13.
The isolation of "link proteins" from bovine nasal cartilage   总被引:3,自引:0,他引:3  
Methods of isolating the water insoluble 'link proteins' from preparations of bovine nasal cartilage proteoglycan aggregates have been investigated. Upon chromatography on Sepharose 4B in 0.1% sodium dodecyl sulfate, the 'link proteins' are found in a discrete, included peak, whereas the bulk of the proteoglycan emerges at the void volume. Some low molecular weight proteoglycan is associated with the 'link proteins'. An alternative procedure, i.e. chromatography on DEAE-cellulose in sodium dodecyl sulfate, has also been examined. In 0.1% sodium dodecyl sulfate, proteoglycan monomer is not absorbed by the column, whereas 'link proteins' are. Subsequently, the 'link proteins' with a minor fraction of the proteoglycan are eluted with 1.0% sodium dodecyl sulfate. Both procedures serve to separate the 'link proteins' from the bulk of proteoglycan present in an aggregate preparation, but additional steps are necessary to achieve homogeneity. Thus a 'link protein' preparation, fractionated from proteoglycan aggregate by equilibrium density gradient centrifugation under dissociative conditions, can be finally purified by chromatography on DEAE-cellulose in sodium dodecyl sulfate.  相似文献   

14.
Treatment of vaccinia virions with 1% sodium dodecyl sulfate in the absence of reducing agents resulted in the release of subviral particles termed "subnucleoids," which contained viral DNA in combination with four polypeptides with molecular weights of 90,000, 68,000, 58,000 and 10,000. Biochemical and electron microscopic studies showed that viral DNA in combination with these polypeptides was maintained in a superhelical configuration. When subnucleoids were "fixed" with glutaraldehyde and formaldehyde and then examined by electron microscopy, spherical particles were observed, in which the supercoiled DNA was folded into globular structures that were 20 to 60 nm in diameter and were interconnected by DNA-protein fibers resembling the nucleosome structures described for eucaryotic chromatin.  相似文献   

15.
Soluble NADH dehydrogenase resolved from Complex I of the mitochondrial electron-transfer chain was subjected to gel electrophoresis in the presence of sodium dodecyl sulfate at 4 degrees C, and then the gel was stained for iron with bathophenanthroline disulfonate and thioglycolic acid. The 23,000-dalton subunit was markedly stained, and the 51,000-dalton subunit was also stained, but only slightly. High-performance gel permeation chromatography using an eluant containing 0.1% sodium dodecyl sulfate also demonstrated that these subunits contain an iron-sulfur center: the elution pattern recorded by light absorption at 400 nm gave two peaks corresponding to the positions of the subunits.  相似文献   

16.
The enzymatic activity of bacterial luciferase from Beneckea harveyi (a heterodimer, Mr = approximately 79,000) is rapidly lost upon treatment with trypsin or chymotrypsin. Under nondenaturing conditions, the proteolytically inactivated molecule has the same apparent molecular weight as the native enzyme, and appears to be relatively stable to further proteolytic degradation. Gel electrophoresis in sodium dodecyl sulfate of the products of this digestion shows that only the alpha subunit is degraded during the time of these experiments, and its rate of loss is the same as the rate of loss of light-producing activity. The action of either protease produces a species with mobility indicative of a molecular weight of about 28,000 and smaller fragments, and an unaltered beta subunit.  相似文献   

17.
Delipidation of partially purified outer membranes of Pseudomonas syringae by various delipidating agents resulted in a significant loss of ice nucleation activity associated with the cell envelopes of this and other ice nucleation active bacteria. Lipopolysaccharide depletion of such membranes caused no reduction in ice nucleation activity. Both phospholipid content and ice nucleation activity of membranes were decreased by a similar fractional amount with time after treatment with phospholipase A2. A proportional quantitative relationship between loss of ice nucleation activity and lipid removal with increasing concentrations of sodium cholate and sodium dodecyl sulfate (SDS) was also observed. Significant linear relationships between the amount of lipid removed by phospholipase A2, sodium cholate, and SDS and the loss of ice nucleation activity in P. syringae outer membranes were observed. However, the slopes of these linear relationships for membranes treated with phospholipase A2 (m = 0.80), SDS (m = 0.94), and sodium cholate (m = 0.53) differed. The lower slope value for cholate-treated membranes indicated a partial substitution of sodium cholate for the phospholipids removed. The ice nucleation activity of delipidated outer membranes was restored by reconstitution with various phospholipids in a cholate dialysis procedure. Lipid classes differed in their ability to restore ice nucleation activity to sodium cholate-treated outer membranes. These results suggest that a hydrophobic environment provided either by lipids or certain detergent micelles is required for proper assembly and structural organization of an oligomeric ice protein complex enabling its expression as an ice nucleus.  相似文献   

18.
A rapid assay that is useful for quantitating as little as 1 μg sodium dodecyl sulfate in a 100-μl sample is described. Except for trichloroacetic acid, a variety of other substances tested caused little or no interference with the assay. The method is based on the extraction of a dodecyl sulfate-acridine orange complex from aqueous solution into toluene. Both extraction and spectrophotometric measurement were performed in the same tube, resulting in high precision in replicate determinations and added safety in handling toluene solutions.  相似文献   

19.
The herpes simplex virus glycoprotein designated VP7(B2) is extracted from virions by nonionic detergent in the form of an oligomer, whereas the other detergent-soluble envelope proteins appear to be extracted as monomers. The subunits of the VP7(B2) oligomer cannot be dissociated by 2-mercaptoethanol and are also resistant to dissociation by a mixture of sodium dodecyl sulfate and 2-mercaptoethanol, except at elevated temperature. The oligomeric form of solubilized VP7(B2) appears to be predominantly dimeric, based on the sedimentation rats in sucrose gradients and the electrophoretic mobilities in sodium dodecyl sulfate-containing acrylamide gels of the undissociated and heat-dissociated forms of VP7(B2).  相似文献   

20.
B M Jiang  L J Saif  S Y Kang    J H Kim 《Journal of virology》1990,64(7):3171-3178
Purified virions or radiolabeled lysates of infected MA104 cells were used to characterize the structural and nonstructural polypeptides of a porcine group C rotavirus. At least six structural proteins were identified from purified group C rotavirus by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Of these, two (37,000- and 33,000-molecular-weight polypeptides) were associated with the outer shell, as demonstrated by the ability of EDTA to remove them from the purified virion. The other four polypeptides (molecular weights, 125,000, 93,000, 74,000, and 41,000) were located in the inner shell. The structural or nonstructural nature of a 25,000-molecular-weight protein identified in our studies was unclear. Glycosylation inhibition studies with tunicamycin in infected cells demonstrated that the 37,000- and 25,000-molecular-weight proteins were glycosylated and contained mannose-rich oligosaccharides identified by radiolabeling of the infected cells with [3H]mannose. The 37,000-molecular-weight outer shell glycoprotein was shown by pulse-chase experiments to be posttranslationally processed. The kinetics of viral polypeptide synthesis in infected cells were also studied, and maximal synthesis occurred at 6 to 9 h postinfection. The 41,000-molecular-weight inner capsid polypeptide was the most abundant and was the subunit structure of a 165,000-molecular-weight protein aggregate. Two polypeptides (molecular weights, 39,000 and 35,000) appeared to be nonstructural, as determined by comparison of the protein pattern of radiolabeled infected cell lysates with that of purified virions. Radioimmunoprecipitation was used to examine the serologic cross-reactions between the viral polypeptides of a group C rotavirus with those of a group A rotavirus. No serologic cross-reactivities were detected. The polypeptides of group A and C rotaviruses are compared and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号