首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thus far, simian immunodeficiency virus from chimpanzees (SIVcpz) genomes have been characterized as Pan troglodytes troglodytes and show a strong relation with human immunodeficiency virus (HIV)-1 N in their env genes. We fully characterized another SIVcpz from P. t. troglodytes. This chimpanzee (Cam5) was, as was also the host of SIVcpz-cam3, wild born in Cameroon, a region where all three groups of HIV-1 (M, N and O) co-occur. In contrast to other SIVcpz, SIVcpz-cam5 was isolated immediately after the rescue of the animal. Our data demonstrate that SIVcpz-cam5, like SIVcpz-cam3, grows easily on human peripheral blood mononuclear cells (PBMCs) and uses CCR5 as a co-receptor similar to HIV-1 N YBF30. Phylogenetic analysis based on the entire env gene shows that SIVcpz-cam5 falls into the same unique subcluster as HIV-1 N YBF30, SIVcpz-cam3 and SIVcpz-US. A phylogenetic relationship was also found with the vif gene of HIV-1 N. This study provides proof that HIV-1 N related viruses circulate in wild P. t. troglodytes.  相似文献   

2.
Thus far, simian immunodeficiency virus from chimpanzees (SIVcpz) genomes have been characterized as Pan troglodytes troglodytes and show a strong relation with human immunodeficiency virus (HIV)-1 N in their env genes. We fully characterized another SIVcpz from P. t. troglodytes . This chimpanzee (Cam5) was, as was also the host of SIVcpz-cam3, wild born in Cameroon, a region where all three groups of HIV-1 (M, N and O) co-occur. In contrast to other SIVcpz, SIVcpz-cam5 was isolated immediately after the rescue of the animal. Our data demonstrate that SIVcpz-cam5, like SIVcpz-cam3, grows easily on human peripheral blood mononuclear cells (PBMCs) and uses CCR5 as a co-receptor similar to HIV-1 N YBF30. Phylogenetic analysis based on the entire env gene shows that SIVcpz-cam5 falls into the same unique subcluster as HIV-1 N YBF30, SIVcpz-cam3 and SIVcpz-US. A phylogenetic relationship was also found with the vif gene of HIV-1 N. This study provides proof that HIV-1 N related viruses circulate in wild P. t. troglodytes .  相似文献   

3.
4.
Human immunodeficiency virus type 1 (HIV-1) group N from Cameroon is phylogenetically close, in env, to the simian immunodeficiency virus (SIV) cpz-gab from Gabon and SIVcpz-US of unknown geographic origin. We screened 29 wild-born Cameroonian chimpanzees and found that three (Cam3, Cam4, and Cam5) were positive for HIV-1 by Western blotting. Mitochondrial DNA sequence analysis demonstrated that Cam3 and Cam5 belonged to Pan troglodytes troglodytes and that Cam4 belonged to P. t. vellerosus. Genetic analyses of the viruses together with serological data demonstrated that at least one of the two P. t. troglodytes chimpanzees (Cam5) was infected in the wild, and revealed a horizontal transmission between Cam3 and Cam4. These data confirm that P. t. troglodytes is a natural host for HIV-1-related viruses. Furthermore, they show that SIVcpz can be transmitted in captivity, from one chimpanzee subspecies to another. All three SIVcpz-cam viruses clustered with HIV-1 N in env. The full Cam3 SIVcpz genome sequence showed a very close phylogenetic relationship with SIVcpz-US, a virus identified in a P. t. troglodytes chimpanzee captured nearly 40 years earlier. Like SIVcpz-US, SIVcpz-cam3 was closely related to HIV-1 N in env, but not in pol, supporting the hypothesis that HIV-1 N results from a recombination event. SIVcpz from chimpanzees born in the wild in Cameroon are thus strongly related in env to HIV-1 N from Cameroon, demonstrating the geographic coincidence of these human and simian viruses and providing a further strong argument in favor of the origin of HIV-1 being in chimpanzees.  相似文献   

5.
With the exception of humans, chimpanzees show the most diverse and complex tool-using repertoires of all extant species. Specific tool repertoires differ between wild chimpanzee populations, but no apparent genetic or environmental factors have emerged as definitive forces shaping variation between populations. However, identification of such patterns has likely been hindered by a lack of information from chimpanzee taxa residing in central Africa. We report our observations of the technological system of chimpanzees in the Goualougo Triangle, located in the Republic of Congo, which is the first study to compile a complete tool repertoire from the Lower Guinean subspecies of chimpanzee (Pan troglodytes troglodytes). Between 1999 and 2006, we documented the tool use of chimpanzees by direct observations, remote video monitoring, and collections of tool assemblages. We observed 22 different types of tool behavior, almost half of which were habitual (shown repeatedly by several individuals) or customary (shown by most members of at least one age-sex class). Several behaviors considered universals among chimpanzees were confirmed in this population, but we also report the first observations of known individuals using tools to perforate termite nests, puncture termite nests, pound for honey, and use leafy twigs for rain cover. Tool behavior in this chimpanzee population ranged from simple tasks to hierarchical sequences. We report three different tool sets and a high degree of tool-material selectivity for particular tasks, which are otherwise rare in wild chimpanzees. Chimpanzees in the Goualougo Triangle are shown to have one of the largest and most complex tool repertoires reported in wild chimpanzee populations. We highlight new insights from this chimpanzee population to our understanding of ape technological systems and evolutionary models of tool-using behavior.  相似文献   

6.
Divergence population genetics of chimpanzees   总被引:18,自引:0,他引:18  
The divergence of two subspecies of common chimpanzees (Pan troglodytes troglodytes and P. t. verus) and the bonobo (P. paniscus) was studied using a recently developed method for analyzing population divergence. Under the isolation with migration model, the posterior probability distributions of divergence time, migration rates, and effective population sizes were estimated for large multilocus DNA sequence data sets drawn from the literature. The bonobo and the common chimpanzee are estimated to have diverged approximately 0.86 to 0.89 MYA, and the divergence of the two common chimpanzee subspecies is estimated to have occurred 0.42 MYA. P. t. troglodytes appears to have had a larger effective population size (22,400 to 27,900) compared with P. paniscus, P. t. verus, and the ancestral populations of these species. No evidence of gene flow was found in the comparisons involving P. paniscus; however a clear signal of unidirectional gene flow was found from P. t. verus to P. t. troglodytes (2Nm = 0.51).  相似文献   

7.
Oral malignancy is rare in chimpanzees. A 34‐year‐old female chimpanzee (Pan troglodytes) at Kumamoto Sanctuary, Japan, had developed it. Treatment is technically difficult for chimpanzees while malignant neoplasm is seemingly rising in captive populations. Widespread expert discussion, guidelines for treatment, especially for great apes in terminal stages is urgently needed.  相似文献   

8.
The completion of the chimpanzee genome will greatly help us determine which genetic changes are unique to humanity. Chimpanzees are our closest living relative, and a recent study has made considerable progress towards decoding the genome of our sister taxon.1 Over 75,000 common chimpanzee (Pan troglodytes) bacterial artificial chromosome end sequences were aligned and mapped to the human genome. This study shows the remarkable genetic similarity (98.77%) between humans and chimpanzees, while highlighting intriguing areas of potential difference. If we wish to understand the genetic basis of humankind, the completion of the chimpanzee genome deserves high priority.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) evolved via cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees (Pan troglodytes). Chimpanzees, like humans, are susceptible to infection by HIV-1. However, unlike humans, infected chimpanzees seldom develop immunodeficiency when infected with SIVcpz or HIV-1. SIVcpz and most strains of HIV-1 require the cell-surface receptor CC chemokine receptor 5 (CCR5) to infect specific leukocyte subsets, and, subsequent to infection, the level of CCR5 expression influences the amount of HIV-1 entry and the rate of HIV-1 replication. Evidence that variants in the 5' cis-regulatory region of CCR5 (5'CCR5) affect disease progression in humans suggests that variation in CCR5 might also influence the response of chimpanzees to HIV-1/SIVcpz. To determine whether patterns of genetic variation at 5'CCR5 in chimpanzees are similar to those in humans, we analyzed patterns of DNA sequence variation in 37 wild-born chimpanzees (26 P. t. verus, 9 P. t. troglodytes, and 2 P. t. schweinfurthii), along with previously published 5'CCR5 data from 112 humans and 50 noncoding regions in the human and chimpanzee genomes. These analyses revealed that patterns of variation in 5'CCR5 differ dramatically between chimpanzees and humans. In chimpanzees, 5'CCR5 was less diverse than 80% of noncoding regions and was characterized by an excess of rare variants. In humans, 5'CCR5 was more diverse than 90% of noncoding regions and had an excess of common variants. Under a wide range of demographic histories, these patterns suggest that, whereas human 5'CCR5 has been subject to balancing selection, chimpanzee 5'CCR5 has been influenced by a selective sweep. This result suggests that chimpanzee 5'CCR5 might harbor or be linked to functional variants that influence chimpanzee resistance to disease caused by SIVcpz/HIV-1.  相似文献   

10.
In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ~700 autosomal SNPs derived from chimpanzee genomic data and a further ~100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10-20) is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions.  相似文献   

11.
Identifying microbial pathogens with zoonotic potential in wild-living primates can be important to human health, as evidenced by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) and Ebola virus. Simian foamy viruses (SFVs) are ancient retroviruses that infect Old and New World monkeys and apes. Although not known to cause disease, these viruses are of public health interest because they have the potential to infect humans and thus provide a more general indication of zoonotic exposure risks. Surprisingly, no information exists concerning the prevalence, geographic distribution, and genetic diversity of SFVs in wild-living monkeys and apes. Here, we report the first comprehensive survey of SFVcpz infection in free-ranging chimpanzees (Pan troglodytes) using newly developed, fecal-based assays. Chimpanzee fecal samples (n = 724) were collected at 25 field sites throughout equatorial Africa and tested for SFVcpz-specific antibodies (n = 706) or viral nucleic acids (n = 392). SFVcpz infection was documented at all field sites, with prevalence rates ranging from 44% to 100%. In two habituated communities, adult chimpanzees had significantly higher SFVcpz infection rates than infants and juveniles, indicating predominantly horizontal rather than vertical transmission routes. Some chimpanzees were co-infected with simian immunodeficiency virus (SIVcpz); however, there was no evidence that SFVcpz and SIVcpz were epidemiologically linked. SFVcpz nucleic acids were recovered from 177 fecal samples, all of which contained SFVcpz RNA and not DNA. Phylogenetic analysis of partial gag (616 bp), pol-RT (717 bp), and pol-IN (425 bp) sequences identified a diverse group of viruses, which could be subdivided into four distinct SFVcpz lineages according to their chimpanzee subspecies of origin. Within these lineages, there was evidence of frequent superinfection and viral recombination. One chimpanzee was infected by a foamy virus from a Cercopithecus monkey species, indicating cross-species transmission of SFVs in the wild. These data indicate that SFVcpz (i) is widely distributed among all chimpanzee subspecies; (ii) is shed in fecal samples as viral RNA; (iii) is transmitted predominantly by horizontal routes; (iv) is prone to superinfection and recombination; (v) has co-evolved with its natural host; and (vi) represents a sensitive marker of population structure that may be useful for chimpanzee taxonomy and conservation strategies.  相似文献   

12.
There has been a captive Pan troglodytes colony at Taronga Park Zoo in Sydney, Australia, since the mid-1930s. Demographic data on these animals were first analyzed in 1986; however, further information collected for 15 years since then is now available. The reproductive histories of 33 females in the colony have been recorded, and these data form the largest collection of captive chimpanzee data from a setting that has involved natural breeding conditions since the mid-1960s. These data were analyzed in conjunction with data from wild populations to establish the degree of variability present within chimpanzee reproductive parameters, and to identify which distinctive life history characteristics persist in well-provisioned, natural-fertility populations. The age at first birth for the chimpanzee females is 9.8 yr on average (n=16), which is 1-4.8 yr earlier than the average for wild populations. In line with this accelerated reproduction, birth intervals are also significantly shorter than those in noncaptive chimpanzee populations. The median birth interval for all surviving infants (based on a Kaplan-Meier survival analysis) is 49 months (n=43) compared to 62+ months for wild groups. At the same time, infant mortality remains high. The data confirm distinctive features of the life history of common chimpanzees, including later maturation, long birth intervals, a relatively invariant fertility schedule, and high juvenile mortality. However, aspects of both fertility and mortality are significantly related to social circumstances, indicating that in common chimpanzees, as in humans, life history characters may represent ecological and social adaptations rather than species-fixed characteristics.  相似文献   

13.

Background

The mechanisms that underlie the diversification of tropical animals remain poorly understood, but new approaches that combine geo-spatial modeling with spatially explicit genetic data are providing fresh insights on this topic. Data about the diversification of tropical mammals remain particularly sparse, and vanishingly few opportunities exist to study endangered large mammals that increasingly exist only in isolated pockets. The chimpanzees of Cameroon represent a unique opportunity to examine the mechanisms that promote genetic differentiation in tropical mammals because the region is home to two chimpanzee subspecies: Pan troglodytes ellioti and P. t. trogolodytes. Their ranges converge in central Cameroon, which is a geographically, climatically and environmentally complex region that presents an unparalleled opportunity to examine the roles of rivers and/or environmental variation in influencing the evolution of chimpanzee populations.

Results

We analyzed microsatellite genotypes and mtDNA HVRI sequencing data from wild chimpanzees sampled at a fine geographic scale across Cameroon and eastern Nigeria using a spatially explicit approach based upon Generalized Dissimilarity Modeling. Both the Sanaga River and environmental variation were found to contribute to driving separation of the subspecies. The importance of environmental variation differed among subspecies. Gene-environment associations were weak in P. t. troglodytes, whereas environmental variation was found to play a much larger role in shaping patterns of genetic differentiation in P. t. ellioti.

Conclusions

We found that both the Sanaga River and environmental variation likely play a role in shaping patterns of chimpanzee genetic diversity. Future studies using single nucleotide polymorphism (SNP) data are necessary to further understand how rivers and environmental variation contribute to shaping patterns of genetic variation in chimpanzees.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-014-0274-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
我们利用标准化调查和广泛调查两种方法对尼日利亚西南部森林中黑猩猩(Pan troglodytes)的分布状态进行了调查。本研究确认该地区总计2 443·58 km2的15个森林保护区内存在该物种。然而基于间接证据,该地区之前仅有8个森林保护区共计1 920·48 km2被调查过。我们将独立收集的年度数据根据不同保护区进行分类总结并且估计了建巢黑猩猩的个体密度。研究结果显示该地区的黑猩猩呈低密度高分散分布,其中只有Eba和Ise两个森林保护区中黑猩猩的分布密度显著大于0·20/km2。研究区域内四个森林保护区中黑猩猩的建巢数大于10 (Akure/Ofosu森林保护区,13个; Oluwa森林保护区, 11个;Ise森林保护区22个; Ago-Owu森林保护区,11个)。此外,在Ise森林保护区内我们观察到黑猩猩其它活动(例如观望行为,发声行为,取食迹象和粪便)的频次显著高于其它森林保护区。研究结果表明,残余且易于管理的黑猩猩种群分布于该调查区域。建议采取适当的保护措施来保证它们的继续生存  相似文献   

15.
DNAs from four wild chimpanzees (Pan troglodytes schweinfurthi) from eastern Africa were screened for 14 DNA viruses and retroviruses. Between two and three viruses were found in each animal. An entire hepatitis B virus (HBV) genome was amplified and sequenced from samples taken from one animal. This indicates that HBV is distributed across the entire range of chimpanzee habitats.  相似文献   

16.
In the wild, female chimpanzees (Pan troglodytes) are subject to male aggression that at times can be prolonged or particularly violent. There are no reports of cooperative retaliation to such aggression, a strategy observed in the congeneric Pan paniscus, from the wild despite >4 decades of detailed behavioral study across a number of populations and its occurrence among captive female chimpanzees. If the reports from captivity represent an inherent capacity, then the absence of similar reports from wild populations suggests that females may be able to form coalitions only under appropriate ecological and demographic conditions. During a study of male and female aggressive interactions among chimpanzees of the Budongo Forest, Uganda, wild adult female chimpanzees sometimes formed coalitions with one another to retaliate against male aggression. This may be possible because these females tend to be more gregarious than in other populations of East African chimpanzees, as other studies of the same population have suggested; the extent and variation of female chimpanzee social strategies may, therefore, need reconsideration. Further, my observations strengthen the argument that at least some of the differences between chimpanzees and bonobos may be more of degree than of kind.  相似文献   

17.
Emergence of human immunodeficiency viruses HIV-1 and HIV-2 results from interspecies transmission from simian viruses SIV. SIVcpzPtt infecting chimpanzees, and from which the HIV-1 (subgroups M and N) is derived is still found in the Pan troglodytes troglodytes population of south Cameroon chimpanzees. The ancestor of HIV-1 group O, is found in the Gorilla residing in Western Africa, but chimpanzees are in fact the initial reservoir of the SIV viruses SIVgor, and it is still unclear whether the group O HIV-1 has been transmitted to humans by gorillas and/or chimpanzees. At least eight interspecies transmissions between and humans implicating SIVsmm (from sooty mangabey monkeys) have occurred, corresponding to the eight VIH-2 groups. Since habits of hunting and meat preparation in the bush still persistently expose humans in Africa to SIV infection, new interspecies transmission of these viruses remains a possibility.  相似文献   

18.
Little is known about the history and population structure of our closest living relatives, the chimpanzees, in part because of an extremely poor fossil record. To address this, we report the largest genetic study of the chimpanzees to date, examining 310 microsatellites in 84 common chimpanzees and bonobos. We infer three common chimpanzee populations, which correspond to the previously defined labels of “western,” “central,” and “eastern,” and find little evidence of gene flow between them. There is tentative evidence for structure within western chimpanzees, but we do not detect distinct additional populations. The data also provide historical insights, demonstrating that the western chimpanzee population diverged first, and that the eastern and central populations are more closely related in time.  相似文献   

19.
Persistent regurgitation and reingestion is an abnormal behavior seen in many captive NHPs, particularly gorillas and chimpanzees. Successful reduction of regurgitation in captive gorillas has been achieved by providing browse, such as branches and leaves, and feeding continuously throughout the day. However, this modality has not been tested in chimpanzees. The authors tested these methods in a 15-year-old male chimpanzee (Pan troglodytes) with a seven-year history of regurgitation and reingestion by alternately providing additional opportunities to forage or giving daily browse. The results show that providing browse on a daily basis models the feeding behavior of wild chimpanzees and is a successful way to reduce regurgitation and reingestion in a chimpanzee unresponsive to previous dietary changes.  相似文献   

20.
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号