首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a new cytochemical method for detecting the ouabain-sensitive, potassium-dependent p-nitrophenylphosphatase (K-NPPase) activity of the sodium-potassium-activated adenosine triphosphatase (Na-K ATPase) complex. The incubation medium contains p-nitrophenylphosphate (p-NPP) as substrate, cerium chloride as capture agent, Tricine buffer, MgCl2, and KCl. Tricine buffer protected against the medium turbidity caused by non-enzymatic reaction at pH 7.5. Biochemically, the accumulation of p-nitrophenol and phosphate in the reaction precipitate was proportionally related to the enzyme concentration. Ultracytochemically, the reaction products of the K-NPPase activity were localized as fine and uniform electron-dense deposits in the cytoplasmic side of specialized basolateral plasma membranes of cells of kidney distal convoluted tubules, secretory cells of salt gland, and marginal cells of stria vascularis. This method has the advantage of being useful at physiological pH.  相似文献   

2.
Summary Cysteine-sensitive alkaline phosphatase and/or ouabain-sensitive Na+, K+-ATPase were studied by ultrastructure cytochemistry in epithelial cells of proximal and distal kidney tubules. Alkaline phosphatase reactivity was confined to the surface of the microvillous luminal cell membrane of proximal tubule cells, whereas distal tubules and collecting ducts were unreactive. The Na+, K+-ATPase reactivity was localized evenly along the cytoplasmic side of the basolateral cell membrane of cells of proximal and distal tubules and in collecting ducts. In the proximal tubules, where the activity was strongest, the Na+, K+-ATPase deposits were also found in the 10–50 nm gap between the cell membrane and the cisternae of tubulo-cisternal endoplasmic reticulum (TER) underlying a major part of the basolateral cell membrane. The restriction of Na+, K+-ATPase sites, which are involved in extrusion of Na+ from the cell, to a narrow cytoplasmic compartment located between the cell membrane and the cisternae of TER, is consistent with a transport role for the TER.  相似文献   

3.
The localization of gamma-Glutamyltransferase (gamma-GT, E.C.2.3.2.2) was studied on isolated tubular fragments from rat kidney cortex immunocytochemically. Monospecific antibodies raised in the goat against rat kidney gamma-GT were used. Antigoat immunoglobulin from the rabbit conjugated with ferritin was used for visualisation of the antibody binding sites. The enzyme was found to be localized at the brush border membrane of proximal tubules, the luminal membrane of distal tubules and collecting duct segments. The enzyme could further be localized on the antiluminal or basolateral cell membranes of proximal and distal tubular fragments, whereas no such localization was verified for collecting duct segments. The role of this basolateral gamma-GT localization in context with the kidney's ability to extract over 83% of the renal arterial glutathione (GSH) input during a single passage is discussed.  相似文献   

4.
Gastric K+-stimulated p-nitrophenylphosphatase cytochemistry   总被引:1,自引:0,他引:1  
K Fujimoto  K S Ogawa  K Ogawa 《Histochemistry》1986,84(4-6):600-608
A cytochemical study of gastric K+-stimulated p-nitrophenylphosphatase (K-NPPase) activity, corresponding to a K+-stimulated phosphoprotein phosphatase of H-K-ATPase system, has been made by a new cytochemical method. Sections of fixed guinea pig gastric mucosa in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde, were incubated with the incubation medium (1.0 M glycine-0.1 M KOH buffer, pH 9.0, 2.5 ml; 1.1 M KCl, 0.5 ml; 10 mM lead citrate dissolved in 50 mM KOH, 4 ml; levamisole, 6.0 mg; dimethyl sulfoxide, 2.0 ml; 0.1 M p-nitrophenylphosphate (Mg-salt), 1.0 ml; ouabain, 73.0 mg) for 30 min at room temperature. Under a light microscope the specific gastric K-NPPase reaction was distributed only in the parietal cells of the fundic glands. The electron microscopic cytochemistry showed that the gastric K-NPPase activity was localized on the membrane lining the apical surfaces, secretory canaliculi and tubulovesicles. On the other hand, ouabain-sensitive K-NPPase activity (Na-K-ATPase) was demonstrated to localize only in the basolateral membrane of parietal cells with Mayahara's method. These findings support the interrelationships between the apical surface membrane, secretory canalicular membrane and tubulovesicles, and the functional differentiation of the membrane between the secretory membrane and basolateral membrane.  相似文献   

5.
Na+,K+-ATPase was localized at the ultrastructural level in rat and rabbit kidney medulla. The cytochemical method for the K+-dependent phosphatase component of the enzyme, using p-nitrophenylphosphate (NPP) as substrate, was employed to demonstrate the distribution of Na+, K+- ATPase in tissue-chopped sections from kidneys perfusion-fixed with 1% paraformaldehyde-0.25% glutaraldehyde. In other outer medulla of rat kidney, ascending thick limbs (MATL) were sites of intense K+-dependent NPPase (K+-NPPase) activity, whereas descending thick limbs and collecting tubules were barely reactive. Although descending thin limbs (DTL) of short loop nephrons were unstained, DTL from long loop nephrons in outer medulla were sites of moderate K+-NPPase activity. In rat inner medulla, DTL and ascending thin limbs (ATL) were unreactive for K+-NPPase. In rabbit medulla, only MATL were sites of significant K+-NPPase activity. The specificity of the cytochemical localization of Na+,K+-ATPase at reactive sites in rat and rabbit kidney medulla was demonstrated by K+-dependence of reaction product deposition, localization of reaction product (precipitated phosphate hydrolyzed from NPP) to the cytoplasmic side of basolateral plasma membranes, insensitivity of the reaction to inhibitors of nonspecific alkaline phosphatase, and, in the glycoside-sensitive rabbit kidney, substantial inhibition of staining by ouabain. The observed pattern of distribution of the sodium transport enzyme in kidney medulla is particularly relevant to current models for urine concentration. The presence of substantial Na+,K+-ATPase in MATL is consistent with the putative role of this segment as the driving force for the countercurrent multiplication system in the outer medulla. The absence of significant activity in inner medullary ATL and DTL, however, implies that interstitial solute accumulation in this region probably occurs by passive processes. The localization of significant Na+,K+-ATPase in outer medullary DTL of long loop nephrons in the rat suggests that solute addition in this segment may occur in part by an active salt secretory mechanism that could ultimately contribute to the generation of inner medullary interstitial hypertonicity and urine concentration.  相似文献   

6.
Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.  相似文献   

7.
A histochemical investigation of kidney and lower intestine of the European starling (Sturnus vulgaris) shows no carbonic anhydrase activity in proximal convoluted tubules, although activity is seen in similarly prepared sections of rat proximal tubules. Early distal tubule cells in the starling are stained throughout the cytoplasm and at the apical and highly infolded basolateral membranes. Late distal tubules lose apical activity and have reduced basolateral infolding, resulting in less intense staining. Darkly stained intercalated cells appear in the connecting tubules and cortical collecting ducts. Both of these segments also show intense basolateral staining. Medullary cones of the starling are highly organized, with central zones containing unstained thin descending limbs of loops of Henle, surrounded by both medullary collecting ducts with only scattered cells staining for enzyme, and by thick ascending limb segments. The latter contain many uniformly stained cells intermingled with occasional unstained cells. Scattered cells of the starling colonic villi demonstrate intense apical brush border membrane staining as well as cytoplasmic staining. Cells lining the cloaca stain less intensely. A biochemical assay for carbonic anhydrase was used to quantify enzyme activity in these tissues. Starling kidney contained 1.96 ± 0.33 (mean ± SEM) enzyme units/mg protein, less than half the activity seen in rat kidney. Stripped colonic epithelium contained 0.66 ± 0.15 enzyme units/mg protein. These quantitative results correlate well with the interpretations derived from the histochemical observations. The lack of proximal tubule carbonic anhydrase activity suggests that the avian kidney relies more on distal nephron segments to achieve net acidification of the urine.  相似文献   

8.
The electron-microscopic localization of ouabain-sensitive, K-dependent p-nitrophenylphosphatase (K-NPPase) activity of the Na - K-ATPase complex was studied in the exorbital lacrimal gland of the untreated rat with the use of a newly developed one-step lead-citrate method (Mayahara and Ogawa 1980; Mayahara et al. 1980). In the rat lacrimal gland fixed for 15 min in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde, an electron-dense reaction product was observed on the plasma membrane of the basal infoldings and the lateral interdigitations of the ductal cells. The most intense reaction product - and thus the major site of the Na - K-ATPase activity - was evident on the basolateral membranes of the cells of the large interlobular ducts; a weak reaction was seen on the basolateral, extensively folded plasma membranes of the small intercalated ducts; no reaction product was observed on the plasma membranes of the acinar cells. Addition of 1) 10 mM ouabain, 2) p-chloromercuri-phenyl-sulfonic acid (PCMB-S), 3) elimination of K-ions from the incubation medium, or 4) preheating abolished completely the K-NPPase reaction. The activity was also substrate-dependent. Mg-ATPase-activity was observed not only in the basolateral membranes of all ductal cells but also in the basal part of the acinar cells and on the walls of blood vessels. This reaction was neither inhibited by ouabain nor activated by K-ions. The precipitate of the Mg-ATPase-activity was localized at the extracellular side of the plasma membrane, whereas the K-NPPase-reaction product was restricted to the cytoplasmic side of the plasmalemma. In contrast, non-specific alkaline-phosphatase (ALPase) activity was missing in cells of the large interlobular ducts, but obvious on the apical plasmalemma of cells lining the small intercalated ducts. With respect to its localization and reactivity pattern the activity of the K-NPPase (member of the Na - K-ATase complex) differs markedly from the Mg-ATPase- and ALPase-activity.  相似文献   

9.
This study is aimed both at characterizing an ATPase activity in rat kidney equivalent to the proton pump described in bovine kidney medulla and at localizing this enzyme along the nephron. Membrane fractions isolated from kidney homogenates by differential and density gradient centrifugations were enriched 7-fold in ATPase activity sensitive to N-ethylmaleimide (NEM). These fractions also displayed ATP-dependent proton transport. ATPase activity and proton transport in vesicles had similar pharmacological properties as both were insensitive to vanadate and ouabain and had similar sensitivities toward NEM (apparent Ki = 20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 50 microM). Proton transport was dependent on chloride availability as chloride addition to the extravesicular medium stimulated proton transport in a dose-dependent fashion (apparent K 1/2 = 7 mM). NEM-sensitive ATPase activity displaying similar pharmacological properties as proton transport in vesicles was also found in single segments of nephron. It was insensitive to vanadate and ouabain, was inhibited by similar concentrations of NEM (apparent Ki = 15-20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 30 microM), and is therefore likely to be a proton pump. NEM-sensitive ATPase was localized in all the segments of the rat nephron; its activity was highest in proximal convoluted tubules; intermediate in proximal straight tubules, thick ascending limbs, and cortical collecting tubules; and lowest in outer medullary collecting tubules.  相似文献   

10.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

11.
Gastric K+-stimulated p-nitrophenylphosphatase cytochemistry   总被引:1,自引:0,他引:1  
Summary A cytochemical study of gastric K+-stimulated p-nitrophenylphosphatase (K-NPPase) activity, corresponding to a K+-stimulated phosphoprotein phosphatase of H-K-ATPase system, has been made by a new cytochemical method.Sections of fixed guinea pig gastric mucosa in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde, were incubated with the incubation medium (1.0 M glycine-0.1 M KOH buffer, pH 9.0, 2.5 ml; 1.1 M KCl, 0.5 ml; 10 mM lead citrate dissolved in 50 mM KOH, 4 ml; levamisole, 6.0 mg; dimethyl sulfoxide, 2.0 ml; 0.1 M p-nitrophenylphosphate (Mg-salt), 1.0 ml; ouabain, 73.0 mg) for 30 min at room temperature. Under a light microscope the specific gastric K-NPPase reaction was distributed only in the parietal cells of the fundic glands. The electron microscopic cytochemistry showed that the gastric K-NPPase activity was localized on the membrane lining the apical surfaces, secretory canaliculi and tubulovesicles. On the other hand, ouabain-sensitive K-NPPase activity (Na-K-ATPase) was demonstrated to localize only in the basolateral membrane of parietal cells with Mayahara's method.These findings support the interrelationships between the apical surface membrane, secretory canalicular membrane and tubulovesicles, and the functional differentiation of the membrane between the secretory membrane and basolateral membrane.In honour of Prof. P. van DuijnPart of this paper was presented at the 24th Annual Meeting of the Japan Society of Histochemistry and Cytochemistry held in Nagoya, October 27–28, 1983 (Ogawa KS, Fujimoto K, Ogawa K (1983) A new lead citrate method for the cytochemical demonstration of the H+–K+-ATPase with p-NPP as a substrate. Acta Histochem Cytochem 16:662)This study was supported by Grants-in-Aid for Encouragement of Young Scientists No. 60770019 to K. Fujimoto from the Ministry of Education, Science and Culture, the Japanese Government  相似文献   

12.
Potassium channels along the nephron   总被引:2,自引:0,他引:2  
The K+ channels that are present in three different nephron segments, the Necturus proximal, Amphiuma early distal (diluting segment), and rabbit collecting tubule have been examined. Ca2+-sensitive K+ channels were present in the apical membranes of the cells lining all these segments. The channels were all voltage-sensitive and their open probability increased with membrane depolarization. Because of the ubiquitous distribution, it is suggested that this channel is responsible for K+ secretion by the nephron and that the same intracellular regulators act throughout the various segments. Basolateral K+ channels have been examined only in Necturus proximal tubules. This channel is apparently insensitive to Ca2+; the voltage dependence is exactly opposite to that of the apical K+ channels; that is, hyperpolarizing potentials caused an increase in open probability. These differences in regulatory factors permit the independent regulation of apical and basolateral membrane K+ permeabilities that must occur in renal cells.  相似文献   

13.
Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO(3)(-) absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40-45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H(+)-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO(3)(-) absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.  相似文献   

14.
Amphibians inhabit areas ranging from completely aqueous to terrestrial environments and move between water and land. The kidneys of all anurans are similar at the gross morphological level: the structure of their nephrons is related to habitat. According to the observation by light and electron microscopy, the cells that make up the nephron differ among species. Immunohistochemical studies using antibodies to various ATPases showed a significant species difference depending on habitat. The immunoreactivity for Na+,K(+)-ATPase was low in the proximal tubules but high in the basolateral membranes of early distal tubules to collecting ducts in all species. In the proximal tubule, apical membranes of the cells were slightly immunoreactive to H(+)-ATPase antibody in aquatic species. In the connecting tubule and the collecting duct, the apical membrane of intercalated cells was immunoreactive in all species. In aquatic species, H+,K(+)-ATPase immunoreactivity was observed in cell along the proximal, distal tubule to the collecting duct. However, H+,K(+)-ATPase was present along the intercalated cells of the distal segments from early distal to collecting tubules in terrestrial and semi-aquatic species. In the renal corpuscle, the neck segment and the intermediate segment, immunoreactivities to ion pumps were not observed in any of the species examined. Taking together our observations, we conclude that in the aquatic species, a large volume of plasma must be filtered in a large glomerulus and the ultrafiltrate components are reabsorbed along a large and long proximal segment of the nephron. Control of tubular transport may be poorly developed when a small short distal segment of the nephron is observed. On the contrary, terrestrial species have a long and well-developed distal segment and regulation mechanisms of tubular transport may have evolved in these segments. Thus, the development of the late distal segments of the nephron is one of the important factors for the terrestrial adaptation.  相似文献   

15.
The lipid composition and fluidity of basolateral membranes prepared from the mucosa of the proximal, middle and distal thirds of the rat small intestine were determined. Fluidity, as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene and a series of anthroyloxy fatty acid derivatives, is decreased in the distal third as compared to the proximal segments. This pattern is similar to that described previously for microvillus membranes. The decrease in fluidity of the distal as compared to the proximal membranes results from an increase in cholesterol content, cholesterol/phospholipid molar ratio and degree of saturation of the fatty acid residues. In the middle and distal thirds of the gut, the degree of saturation of the fatty acid residues is higher in microvillus as compared to basolateral membranes, accounting in part for the characteristically lower fluidity of the luminal membranes. The specific activity of the basolateral membrane (Na+ + K+)-dependent adenosine triphosphatase is significantly lower in the distal as compared to the proximal and middle thirds of the intestinal mucosa. Studies of the binding of [3H]ouabain indicate that this pattern results from fewer enzyme sites in the distal membranes.  相似文献   

16.
Tissue kallikrein (E.C. 3.4.21.35) and arginine esterase A, another closely related, kinin-generating serine protease, have been localized by immunocytochemistry in rat kidney, using monoclonal antibodies that do not crossreact with other kallikrein-related enzymes or with tonin. Kallikrein was present primarily in the apical cytoplasm of the connecting tubule and the cortical collecting duct. Esterase A, on the other hand, was present primarily in the basolateral region of both proximal and distal straight tubules in the outer medulla and medullary rays. In addition, esterase A was demonstrable in distal convoluted tubules and, to a lesser extent, in proximal convoluted tubules. The presence of different kinin-generating enzymes at these sites would permit the formation of kinins from appropriate substrates on both the vascular and luminal poles of separate segments of the kidney tubule.  相似文献   

17.
The distribution of carbonic anhydrase in the kidney of the cynomolgus monkey was studied by the histochemical method of Hansson. Glomeruli and Bowman's capsule were inactive. Convoluted proximal tubules showed high enzyme activity at the brush border and the basolateral membranes and the cytoplasm. Straight proximal tubules were less intensely stained. In nephrons with long loops of Henle, the descending thin limb contained weak enzyme activity, whereas the ascending thin limb was inactive. The thick limb of Henle's loop displayed most enzyme activity at the luminal cell border. In distal convoluted tubules enzyme activity was restricted to the basal part of the cells. In the late distal tubule, intercalated cells appeared among the "ordinary" distal cells and contained abundant cytoplasmic enzyme. Many intensely stained intercalated cells were also found in the cortical and outer medullary segments of the collecting duct, intermingled with more weakly stained chief cells. In the inner medullary segment of the collecting duct, enzyme activity gradually disappeared. Many capillaries were clearly stained for enzyme activity. The capillary staining apparently varied with that of the kidney tubules; virtually all capillaries in the cortex, but very few in the inner medulla, were stained. The distribution of carbonic anhydrase in the kidney tubules of the monkey is very similar to that in man and in the rat, but the primate kidney differs from the rat kidney by the presence of capillary enzyme activity. The functional importance of this difference is not clear at present.  相似文献   

18.
In order to obtain basic information on the transport properties of differentiating embryonic nephrons, we examined the 7-day-old chick mesonephros by measuring the transtubular epithelial potential difference (TPD) and by histochemical detection of Na,K-ATPase activity. TPD as an indicator of the electrogenic transport was measured in individual segments of superficial nephrons in vivo. Their electric polarity was always lumen-negative. TPD was reduced by addition of 10 mM KCN applied to the mesonephric nephrons from the outside. In the proximal tubules, TPD was significantly lower (mean+/-SD: -1.0+/-0.5 mV) than in the distal and collecting tubules (-2.2+/-1.0 mV, p< or =0.05). Activity of the sodium pump was evaluated histochemically by detection of ouabain-sensitive potassium-dependent p-nitrophenyl phosphatase in cryostat sections of the mesonephros. The enzyme activity was demonstrated only in distal tubules and in the collecting ducts, but not in the proximal tubules. These findings have revealed significant differences between embryonic nephron segments: the distal tubule, in contrast to the proximal one, is supplied by the sodium pump and is able to generate higher TPD. Therefore, we consider that it is only the distal nephron, which possesses the ability of active transport.  相似文献   

19.
Carbonic anhydrase II-deficient mice offer a possibility to study the localization along the nephron of membrane-associated carbonic anhydrase (CA) activity without interference from the cytoplasmic enzyme. We studied the localization of CA in kidneys from CA II-deficient and control mice by immunocytochemistry (CA II) and histochemistry. Cytoplasmic staining was found in convoluted proximal tubule, thick limb of Henle, and principal and intercalated cells of collecting duct in the control animals but was absent in the CA II-deficient mice. In cells with cytoplasmic staining the cell nuclei were stained. Intense histochemical activity was associated with apical and basolateral membranes of convoluted proximal tubule, first part of thin limb, thick limb, and basolateral membranes of late distal tubule. In collecting ducts of control animals, the basolateral cell membranes of intercalated cells were the only clearly stained membranes. In CA II-deficient animals one type of intercalated cell was stained most intensely at the apical membranes and another only at the basolateral. We suggest that the former corresponds to Type A intercalated cells secreting H+ ions to the luminal side and the latter to Type B cells secreting H+ ions to the basolateral side.  相似文献   

20.
Summary To identify the renal cortical tubular segments involved in tubulo-interstitial disease in formalin-fixed, paraffin-embedded percutaneous kidney biopsies, we developed multiple immunolabeling protocols using segment-specific tubular markers. The present study of biopsies from patients with minimal change or thin basement membrane nephropathy provides a baseline for interpretation of histopathology. Proximal tubules were stained either by the PAS reaction or by the biotinylated Phaseolus vulgaris erythroagglutinin (PHA-E)-streptavidin-gold-silver system (brush borders black). The anti-Tamm-Horsfall (THP) antibody-immunoperoxidase (aminoethylcarbazole, AEC-IPO), and anti-epidermal cytokeratins (ECK) antibodies-immunoalkaline-Fast Blue BB methods marked the distal straight tubules and the cortical collecting system red-brown and blue, respectively. When these immunolabelings were combined, the coapplication of AEC-PO-labeled peanut agglutinin (PNA) or anti-epithelial membrane antigen antibody-AEC-IPO technique (both are markers for distal nephron) visualized the apical membranes of distal convoluted tubules. In the protocol PHA-E + PNA + THP + ECK, the tubular basement membranes were outlined by the anti-laminin antibody-AEC-IPO staining, carried out simultaneously. The protocol PNA + THP + ECK + PAS was found to be a quite appropriate multiple immunolabeling method for the tubules, and is recommended for use as a tool in the study of tubulo-interstitial diseases.Abbreviations PAS periodic acid-Schiff reaction - PHAE Phaseolus vulgaris erythroagglutinin - PNA Peanut agglutinin - EMA epithelial membrane antigen - THP Tamm-Horsfall glycoprotein - ECK epidermal cytokeratins - PO peroxidase - Biot-PHA-E biotinylated PHA-E - APAAP complexes of alkaline phosphatase and mouse monoclonal anti-alkaline phosphatase - SWARI swine anti-rabbit immunoglobulins - FCS fetal calf serum - TBS Tris-buffered saline - AEC aminoethylcarbazole - DAB diaminobenzidine - FBBB Fast Blue BB - IA immunoalkaline - GL glomerulus - PT proximal tubule - DST distal straight tubule - DCT distal convoluted tubule - CCS cortical collecting system - CT connecting tubule - CD collecting duct  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号