首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《植物生态学报》2017,41(8):894
Atmospheric nitrogen deposition has increased in the last several decades due to anthropogenic activities and global changes. Increasing nitrogen deposition has become an important factor regulating carbon cycle in grassland ecosystems. Litter decomposition, a key process of carbon and nutrient cycling in terrestrial ecosystems, is the main source of soil carbon pool and the basis of soil fertility maintenance. Elevated nitrogen deposition could affect litter decomposition by raising soil nitrogen availability, increasing the quantity and quality of litter inputs, and altering soil microorganism and soil conditions. Litter decomposition are complex biological, physical and chemical processes, which were affected by abiotic, biological factors and their interactions. The effects of nitrogen deposition on litter decomposition and the underlying mechanisms were discussed in this paper, including the aspactes of soil nitrogen availability, litter production, litter quality, microclimate, soil microorganism and enzyme activities. The main research contents, directions, methods and existing problems of litter decomposition in grasslands were discussed. We also discussed the prospect of future directions to study the interaction and feedback between nitrogen deposition and grassland ecosystem carbon cycling process.  相似文献   

2.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

3.
Tree growth limitation at treeline has mainly been studied in terms of carbon limitation while effects and mechanisms of potential nitrogen (N) limitation are barely known, especially in the southern hemisphere. We investigated how soil abiotic properties and microbial community structure and composition change from lower to upper sites within three vegetation belts (Nothofagus betuloides and N. pumilio forests, and alpine vegetation) across an elevation gradient (from 0 to 650 m a.s.l.) in Cordillera Darwin, southern Patagonia. Increasing elevation was associated with a decrease in soil N‐NH4+ availability within the N. pumilio and the alpine vegetation belt. Within the alpine vegetation belt, a concurrent increase in the soil C:N ratio was associated with a shift from bacterial‐dominated in lower alpine sites to fungal‐dominated microbial communities in upper alpine sites. Lower forested belts (N. betuloides, N. pumilio) exhibited more complex patterns both in terms of soil properties and microbial communities. Overall, our results concur with recent findings from high‐latitude and altitude ecosystems showing decreased nutrient availability with elevation, leading to fungal‐dominated microbial communities. We suggest that growth limitation at treeline may result, in addition to proximal climatic parameters, from a competition between trees and soil microbial communities for limited soil inorganic N. At higher elevation, soil microbial communities could have comparably greater capacities to uptake soil N than trees, and the shift towards a fungal‐dominated community would favour N immobilization over N mineralization. Though evidences of altered nutrient dynamics in tree and alpine plant tissue with increasing altitude remain needed, we contend that the measured residual low amount of inorganic N available for trees in the soil could participate to the establishment limitation. Finally, our results suggest that responses of soil microbial communities to elevation could be influenced by functional properties of forest communities for instance through variations in litter quality.  相似文献   

4.
Commonly observed positive correlations between litter nitrogen (N) concentrations and decomposition rates suggest that N frequently limits decomposition in its early stages. However, numerous studies have found little, if any, effect of N fertilization on decomposition. I directly compared internal substrate N and externally supplied inorganic N effects on decomposition in sites varying in soil N availability. I decomposed eight substrates (with initial %N from 0–2.5) in control and N-fertilized plots at eight grassland and forest sites in central Minnesota. N fertilization increased decomposition at only two of eight sites, even though decomposition was positively related to litter N at all sites and to soil N availability across sites. The effect of externally supplied N on decomposition was independent of litter N concentration, but was greater at sites with low N availability. The inconsistent effects of substrate and externally supplied N may have arisen because decomposers use organic N preferentially as an N source; because inorganic N availability across sites or with fertilization induced changes in microbial community attributes (for example, lower C:N or greater efficiency) that reduced the response of decomposition to increased inorganic N supply; or because the positive correlation between litter N or site N availability with decomposition was spurious, caused by tight correlations between litter or site N and some other factor that truly limited decomposition. These inconsistent effects of substrate N and external N supply on decomposition suggest that the oft-observed relationship between litter N and decomposition may not indicate N limitation of decomposition.  相似文献   

5.
氮、磷养分有效性对森林凋落物分解的影响研究进展   总被引:5,自引:0,他引:5  
通过对相关研究文献的综述结果表明,氮(N)和磷(P)是构成蛋白质和遗传物质的两种重要组成元素,限制森林生产力和其他生态系统过程,对凋落物分解产生深刻影响。大量的凋落物分解试验发现在土壤N有效性较低的温带和北方森林,凋落物分解速率常与底物初始N浓度、木质素/N比等有很好的相关关系,也受外源N输入的影响;而在土壤高度风化的热带亚热带森林生态系统中,P可能是比N更为重要的分解限制因子。然而控制试验表明,N、P添加对凋落物分解速率的影响并不一致,既有促进效应也有抑制效应。为了深入揭示N、P养分有效性对凋落物分解的调控机制,"底物的C、N化学计量学"假说、"微生物的N开采"假说以及养分平衡的理论都常被用于解释凋落物分解速率的变化。由于微生物分解者具有较为稳定的C、N、P等养分需求比例,在不同的养分供应的周围环境中会体现出不同的活性,某种最缺乏的养分可能就是分解的最重要限制因子。未来的凋落物分解研究,应延长实验时间、加强室内和野外不同条件下的N、P等养分添加控制试验,探讨驱动分解进程的微生物群落结构和酶活性的变化。  相似文献   

6.
The capacity of forest ecosystems to sequester C in the soil relies on the net balance between litter production above, as well as, below ground, and decomposition processes. Nitrogen mineralization and its availability for plant growth and microbial activity often control the speed of both processes. Litter production, decomposition and N mineralization are strongly interdependent. Thus, their responses to global environmental changes (i.e. elevated CO2, climate, N deposition, etc.) cannot be fully understood if they are studied in isolation. In the present experiment, we investigated litter fall, litter decomposition and N dynamics in decomposing litter of three Populus spp., in the second and third growing season of a short rotation coppice under FACE. Elevated CO2 did not affect annual litter production but slightly retarded litter fall in the third growing season. In all species, elevated CO2 lowered N concentration, resulting in a reduction of N input to the soil via litter fall, but did not affect lignin concentrations. Litter decomposition was studied in bags incubated in situ both in control and FACE plots. Litter lost between 15% and 18% of the original mass during the eight months of field incubation. On average, litter produced under elevated CO2 attained higher residual mass than control litter. On the other end, when litter was incubated in FACE plots it exhibited higher decay rates. These responses were strongly species‐specific. All litter increased their N content during decomposition, indicating immobilization of N from external sources. Independent of the initial quality, litter incubated on FACE soils immobilized less N, possibly as a result of lower N availability in the soil. Indeed, our results refer to a short‐term decomposition experiment. However, according to a longer‐term model extrapolation of our results, we anticipate that in Mediterranean climate, under elevated atmospheric CO2, soil organic C pool of forest ecosystems may initially display faster turnover, but soil N availability will eventually limit the process.  相似文献   

7.
Wetland ecosystems store a large amount of organic carbon (C) in soils, due to the slow decomposition rates of plant litter and soil organic matter. Increased nitrogen (N) availability induced by human activities and global warming may accelerate litter decomposition and affect soil organic C dynamics in wetlands. In the present study, we investigated the effect of N addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes in the Sanjiang Plain of Northeast China under field and laboratory conditions. First, we assessed the changes in initial litter chemical composition and subsequent decomposition following three years of N addition at the rate of 24 g N m−2 year−1 under field conditions. Our results showed that N addition increased litter N concentration and decreased C/N ratio, and thus stimulated litter decomposition. Secondly, we examined the effect of increased N availability (0, 25, 50 and 100 mg N g−1 litter) on litter decomposition under laboratory conditions. Increased exterior N availability also enhanced microbial respiration and increased litter mass loss under both waterlogging and non-waterlogging conditions. In addition, waterlogging conditions inhibited microbial respiration and suppressed litter mass loss. These findings demonstrated that N addition increased litter decomposition rates through improved litter quality and enhanced microbial activity in freshwater marshes of Northeast China. This implies that increased N availability accelerates litter decomposition rates, and thus may cause substantial losses of soil C and diminish and even reverse the C sink function of wetlands in the Sanjiang Plain of Northeast China.  相似文献   

8.
The availability of nitrogen (N) is a critical control on the cycling and storage of soil carbon (C). Yet, there are conflicting conceptual models to explain how N availability influences the decomposition of organic matter by soil microbial communities. Several lines of evidence suggest that N availability limits decomposition; the earliest stages of leaf litter decay are associated with a net import of N from the soil environment, and both observations and models show that high N organic matter decomposes more rapidly. In direct contrast to these findings, experimental additions of inorganic N to soils broadly show a suppression of microbial activity, which is inconsistent with N limitation of decomposition. Resolving this apparent contradiction is critical to representing nutrient dynamics in predictive ecosystem models under a multitude of global change factors that alter soil N availability. Here, we propose a new conceptual framework, the Carbon, Acidity, and Mineral Protection hypothesis, to understand the effects of N availability on soil C cycling and storage and explore the predictions of this framework with a mathematical model. Our model simulations demonstrate that N addition can have opposing effects on separate soil C pools (particulate and mineral‐protected carbon) because they are differentially affected by microbial biomass growth. Moreover, changes in N availability are frequently linked to shifts in soil pH or osmotic stress, which can independently affect microbial biomass dynamics and mask N stimulation of microbial activity. Thus, the net effect of N addition on soil C is dependent upon interactions among microbial physiology, soil mineralogy, and soil acidity. We believe that our synthesis provides a broadly applicable conceptual framework to understand and predict the effect of changes in soil N availability on ecosystem C cycling under global change.  相似文献   

9.

Background and aims

Grazing may influence nutrient cycling in several ways. In productive mountain grasslands of central Argentina cattle grazing maintain a mosaic of different vegetation patches: lawns, grazed intensively and dominated by high quality palatable plants, and open and closed tussock grasslands dominated by less palatable species. We investigated if differences in the resources deposited on soil (litter and faeces) were associated with litter decomposition rates and soil nitrogen (N) availability across these vegetation patches.

Methods

We compared the three vegetation patches in terms of litter and faeces quality and decomposability, annual litterfall and faeces deposition rate. We determined decomposition rates of litter and faces in situ and decomposability of the same substrates in a common garden using “litter bags”. We determined soil N availability (with resin bags) in the vegetation patches. Also, we performed a common plant substrates decomposition experiment to assess the effect of soil environment on decomposition process. This technique provides important insights about the soil environmental controls of decomposition (i.e. the sum of soil physicochemical and biological properties, and microclimate), excluding the substrate quality.

Results

The litter quality and faeces deposition rate were higher in grazing lawns, but the total amounts of carbon (C) and nitrogen (N) deposited on soil were higher in tussock grasslands, due to higher litterfall in these patches. The in situ decomposition rates of litter and faeces, and of the two common plant substrates were not clearly related to either grazing pressure, litterfall or litter quality (C, N, P, lignin, cellulose or hemicellulose content). In situ litter decomposition rate and soil ammonium availability were correlated with the decomposition rates of both common plant substrates. This may suggest that difference in local soil environment among patch types is a stronger driver of decomposition rate than quality or quantity of the resource that enter the soil.

Conclusions

Our results show that, although high grazing pressure improves litter quality and increases faeces input, the reduction in biomass caused by herbivores greatly reduces C and N input for the litter decomposition pathway. We did not find an accelerated decomposition rate in grazing lawns as proposed by general models. Our results point to soil environment as a potential important control that could mask the effect of litter quality on field decomposition rates at local scale.  相似文献   

10.
湿地枯落物分解及其对全球变化的响应   总被引:7,自引:0,他引:7  
孙志高  刘景双 《生态学报》2007,27(4):1606-1618
综述了当前湿地枯落物分解及其对全球变化响应的研究动态。湿地枯落物分解研究已随研究方法的改进而不断深化;当前湿地枯落物分解过程研究主要集中在有机质组分和元素含量变化特征的探讨上;湿地枯落物分解同时受生物因素(即枯落物性质以及参与分解的异养微生物和土壤动物的种类、数量和活性等)和非生物因素(即枯落物分解过程的外部环境条件,包括气候条件、水分条件、酸碱度与盐分条件以及湿地沉积的行为与特征等)的制约;模型已成为湿地枯落物分解研究的重要手段,对其研究也在不断深化。还讨论了湿地枯落物分解对于全球变化的响应,指出全球变暖、大气CO2浓度上升、干湿沉降及其化学组成改变可能对枯落物分解产生的直接、间接和综合影响。最后,指出了当前该领域研究尚存在的问题以及今后亟需加强的几个研究方面。  相似文献   

11.
Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition feedbacks via both direct and indirect pathways. Direct pathways include the production of readily decomposed leaf litter and increased N supply to decomposers, whereas indirect pathways include increased tissue N and altered detrital dynamics of non-fixing vegetation. To evaluate the relative importance of direct and indirect pathways, we compared 3-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34% N) to both low-N (0.68% N) and high-N (1.21% N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter. Direct increases in N supply to decomposers via experimental N fertilization did not stimulate decomposition of either species litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant–soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.  相似文献   

12.
凋落物是植物在其生长发育过程中新陈代谢的产物,是土壤有机质输入的重要途径,凋落物分解是生态系统养分循环的关键过程之一。在全球气候变化背景下,热带地区干旱事件发生的频率和强度均在增加,同时,普遍认为热带地区受磷(P)限制,所以探讨干旱胁迫和土壤磷可用性对热带地区叶凋落物分解的影响及两者是否存在交互效应十分必要,有助于了解干旱对该区叶凋落物分解的影响机制以及是否受土壤磷调控。依据植物多度、碳固持类型、叶质地,以海南三亚甘什岭热带低地雨林的4个树种叶凋落物(铁凌 Hopea exalata、白茶树 Koilodepas bainanense、黑叶谷木 Memecylon nigrescens、山油柑 Acronychia pedunculata)为实验材料,依托2019年在该区建成的热带低地雨林模拟穿透雨减少、磷(P)添加双因素交互控制实验平台,包括干旱(D -50%穿透雨)、P添加(P +50Kg P hm-2a-1)、模拟干旱×P添加(DP -50%穿透雨×+50Kg P hm-2a-1)、对照(CK)4个处理,且4种处理随机分布于3个区组,即设置了3个重复。使用常规的凋落物分解袋法探究实验处理对4个树种叶凋落物的分解系数、碳(C)、氮(N)元素动态变化的影响。结果表明:不同树种的叶凋落物因基质质量不同分解存在差异。模拟干旱处理对叶凋落物C、N损失产生抑制作用,但是对不同树种叶凋落物的抑制作用不同,原因是干旱处理通过抑制土壤分解者活动、减弱凋落物的物理破碎作用,间接抑制凋落物分解,并且由于高质量(含N量高)凋落物受微生物分解者影响较大,所以该凋落物分解受干旱抑制程度较大;P添加处理对叶凋落物C损失存在促进作用、N损失存在抑制作用,原因是土壤中P含量的升高,提高了微生物分解高C物质的能力,以及当土壤中P含量较高时,间接抑制微生物通过分解凋落物获取养分或者促进微生物优先完成自身生长代谢需要而不是合成分解凋落物所需要的酶,导致叶凋落物N损失下降;模拟干旱与P添加处理存在显著交互效应,P添加处理缓解或反转了干旱胁迫对叶凋落物分解的抑制作用。以上结果表明,不同基质质量的凋落物分解存在差异,对干旱胁迫的响应不同;在叶凋落物分解过程中,P添加促进C损失、抑制N损失;此外,在热带低地雨林,土壤中P可用性变化可调节干旱对凋落物分解的影响。  相似文献   

13.
Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely distributed northern hardwood species at sites of low and high soil nitrogen availability. In addition, we assessed whether the carbon–nutrient balance (CNB) and growth differentiation balance (GDB) hypotheses could be extended to predict changes in litter quality in response to resource availability. Sugar maple (Acer saccharum) was grown in the field in open‐top chambers at 36 and 55 Pa partial pressure CO2, and initial soil mineralization rates of 45 and 348 μg N g?1 d?1. Naturally senesced leaf litter was assessed for chemical composition and incubated in the laboratory for 111 d. Microbial respiration and the production of dissolved organic carbon (DOC) were quantified as estimates of decomposition. Elevated CO2 and low soil nitrogen resulted in higher litter concentrations of nonstructural carbohydrates and condensed tannins, higher C/N ratios and lower N concentrations. Soil N availability appears to have had a greater effect on litter quality than did atmospheric CO2, although the treatments were additive, with highest concentrations of nonstructural carbohydrates and condensed tannins occurring under elevated CO2–low soil N. Rates of microbial respiration and the production of DOC were insensitive to differences in litter quality. In general, concentrations of litter constituents, except for starch, were highly correlated to those in live foliage, and the CNB/GDB hypotheses proved useful in predicting changes in litter quality. We conclude the chemical composition of sugar maple litter will change in the future in response to rising atmospheric CO2, and that soil N availability will exert a major control. It appears that microbial metabolism will not be directly affected by changes in litter quality, although conclusions regarding decomposition as a whole must consider the entire soil food web.  相似文献   

14.
降水变化和氮沉降影响森林叶根凋落物分解研究进展   总被引:1,自引:0,他引:1  
谭向平  申卫军 《生态学报》2021,41(2):444-455
全球环境变化通过改变凋落物质量和产量、土壤生物以及非生物因子调控森林凋落物分解,从而对森林生态系统物质和能量循环产生重要的影响。就森林凋落物分解对当前我国面临降水格局变化和大气氮沉降增加的响应进行了回顾和系统的分析,发现降水格局改变如降水减少可能降低凋落物质量从而减缓凋落物分解,而氮沉降增加通常提高凋落物质量从而促进凋落物分解(间接效应);降水格局改变通过调节土壤含水量和溶解氧含量进而影响微生物参与的分解过程,或通过改变可溶性组分的淋溶量来影响凋落物分解的物理过程,而氮沉降增加主要通过提高外源氮素的有效性从而促进或抑制微生物参与的分解过程(直接效应)。现有研究大多是基于地上凋落物(例如叶凋落物)来理解和量化森林凋落物分解速率与环境因子之间的关系。但目前对降水格局变化及其与大气氮沉降增加的交互作用如何影响森林地上和地下凋落物分解,以及潜在的微生物学机制仍然缺乏统一和清晰的认识。从土壤性质、凋落物质量、微生物群落结构和功能3个方面构建了环境变化对森林地上和地下凋落物分解的概念框架,并进一步阐述未来研究的重点方向:(1)亟需查明地上和地下凋落物分解的驱动机制;(2)探明降水格局变化和氮添加单因子及两因子交互作用对凋落物分解和养分释放的影响及其生物化学调控机理;(3)阐明微生物群落结构和功能对降水格局变化和氮添加单因子及两因子交互的响应机制。以期为深入探讨全球环境变化对森林凋落物分解的影响,以及环境胁迫下森林土壤"碳库"维持机制的解释提供科学依据。  相似文献   

15.
Few studies have examined the invasion of understory species into closed-canopy forests and, despite inter-specific differences in litter quality and quantity between understory and dominant canopy trees, the influence of understory invasions on soil nitrogen (N) cycling remains unknown. This paper examines litter quality and decomposition of kahili ginger (Hedychium gardnerianum), an invasive understory herb, to determine the influence of this species on N cycling in a Hawaiian montane rainforest. To examine the potential feedback between increased soil N availability and litter decomposition, litter from the invasive ginger, a native tree, and native tree fern was collected from unfertilized and fertilized plots and decomposed in a reciprocal transplant design. Hedychium litter decomposed faster than litter from the two native species. Across species, decomposition rates were negatively correlated with litter lignin content. Despite rapid decomposition rates of Hedychium litter, soil nitrogen availability and rates of net mineralization in the soil were similar in invaded and uninvaded plots. Nitrogen cycling at this site may be more strongly influenced by native species, which contribute the most to overall stand biomass. A negative effect of fertilization on the decomposition of Hedychium litter suggests that a negative feedback between litter quality and soil N availability may exist over longer timescales.  相似文献   

16.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   

17.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

18.
利用植物生长过程中植物组织内养分元素化学性质的季节性变化特点,在2009年生长季的不同月份(5—9月)采集了呼伦贝尔地区贝加尔针茅地上部(茎和叶),作为分解底物,采用分解袋法,研究其分解特点及其影响因素。结果表明:不同月份采集的贝加尔针茅分解底物之间的分解速度存在明显差异,依采集月份逐渐递减,5月>6月>7月>8月>9月;分解底物初始N、P、Zn、K、Mg和Mn含量与分解速度均呈显著正相关,而碳含量和C∶N与分解速度呈显著负相关,初始钙含量、N∶P与分解速度无显著相关性;土壤微生物生物量N与分解底物的残余质量(%)相关性明显;另外,土壤微生物生物量N与凋落物C、N含量也具有明显的相关性;分解底物质量损失与土壤水分含量显著正相关,而与土壤温度的相关性较弱,说明降水变化通过调节土壤湿度来影响凋落物分解。  相似文献   

19.
The extent to which plant communities are determined by resource availability is a central theme in ecosystem science, but patterns of small-scale variation in resource availability are poorly known. Studies of carbon (C) and nutrient cycling provide insights into factors limiting tree growth and forest productivity. To investigate rates of tropical forest litter production and decomposition in relation to nutrient availability and topography in the absence of confounding large-scale variation in climate and altitude we quantified nutrient fluxes via litterfall and leaf litter decomposition within three distinct floristic associations of tropical rain forest growing along a soil fertility gradient at the Sepilok Forest Reserve (SFR), Sabah, Malaysia. The quantity and nutrient content of small litter decreased along a gradient of soil nutrient availability from alluvial forest (most fertile) through sandstone forest to heath forest (least fertile). Temporal variation in litterfall was greatest in the sandstone forest, where the amount of litter was correlated negatively with rainfall in the previous month. Mass loss and N and P release were fastest from alluvial forest litter, and slowest from heath forest litter. All litter types decomposed most rapidly in the alluvial forest. Stand-level N and P use efficiencies (ratios of litter dry mass to nutrient content) were greatest for the heath forest followed by the sandstone ridge, sandstone valley and alluvial forests, respectively. We conclude that nutrient supply limits productivity most in the heath forest and least in the alluvial forest. Nutrient supply limited productivity in sandstone forest, especially on ridge and hill top sites where nutrient limitation may be exacerbated by reduced rates of litter decomposition during dry periods. The fluxes of N and P varied significantly between the different floristic communities at SFR and these differences may contribute to small-scale variation in species composition.  相似文献   

20.
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号