首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N(omega)-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 approximately 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2alpha) expression in the alveolar septa compared with controls (P<0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P<0.01), nNOS- and iNOS-positive cells, elastic fiber content (P<0.001), and isoprostane-8-PGF(2alpha) in the alveolar septa (P<0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.  相似文献   

2.
In the present study we evaluated the role of neurokinins in the modulation of inducible nitric oxide synthase (iNOS) inflammatory cell expression in guinea pigs with chronic allergic airway inflammation. In addition, we studied the acute effects of nitric oxide inhibition on this response. Animals were anesthetized and pretreated with capsaicin (50 mg/kg sc) or vehicle 10 days before receiving aerosolized ovalbumin or normal saline twice weekly for 4 wk. Animals were then anesthetized, mechanically ventilated, given normal saline or N(G)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg ic), and challenged with ovalbumin. Prechallenge exhaled NO increased in ovalbumin-exposed guinea pigs (P < 0.05 compared with controls), and capsaicin reduced this response (P < 0.001). Compared with animals inhaled with normal saline, ovalbumin-exposed animals presented increases in respiratory system resistance and elastance and numbers of total mononuclear cells and eosinophils, including those expressing iNOS (P < 0.001). Capsaicin reduced all these responses (P < 0.05) except for iNOS expression in eosinophils. Treatment with l-NAME increased postantigen challenge elastance and restored both resistance and elastance previously attenuated by capsaicin treatment. Isolated l-NAME administration also reduced total eosinophils and mononuclear cells, as well as those cells expressing iNOS (P < 0.05 compared with ovalbumin alone). Because l-NAME treatment restored lung mechanical alterations previously attenuated by capsaicin, NO and neurokinins may interact in controlling airway tone. In this experimental model, NO and neurokinins modulate eosinophil and lymphocyte infiltration in the airways.  相似文献   

3.
Nitric oxide levels are diminished in hypertensive patients, suggesting nitric oxide might have an important role to play in the development of hypertension. Chronic blockade of nitric oxide leads to hypertension that is sustained throughout the period of the blockade in baroreceptor-intact animals. It has been suggested that the sympathetic nervous system is involved in the chronic increase in blood pressure; however, the evidence is inconclusive. We measured renal sympathetic nerve activity and blood pressure via telemetry in rabbits over 7 days of nitric oxide blockade. Nitric oxide blockade via N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (50 mg x kg(-1) x day(-1)) for 7 days caused a significant increase in arterial pressure (7 +/- 1 mmHg above control levels; P < 0.05). While the increase in blood pressure was associated with a decrease in heart rate (from 233 +/- 6 beats/min before the L-NAME to 202 +/- 6 beats/min on day 7), there was no change in renal sympathetic nerve activity (94 +/- 4 %baseline levels on day 2 and 96 +/- 5 %baseline levels on day 7 of L-NAME; baseline nerve activity levels were normalized to the maximum 2 s of nerve activity evoked by nasopharyngeal stimulation). The lack of change in renal sympathetic nerve activity during the L-NAME-induced hypertension indicates that the renal nerves do not mediate the increase in blood pressure in conscious rabbits.  相似文献   

4.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

5.
Both nitric oxide and prostaglandins induce vasodilatation which is an important feature of local inflammation. The purpose of the study described here was to investigate a possible interaction between these two types of mediators in an experimental model of allergic conjunctivitis. A conjunctival allergic reaction was induced with antigen in sensitized guinea pigs. Conjunctival vascular permeability changes were evaluated with the prophylactic use of an inhibitor of nitric oxide synthase (L-NAME) and a cycloxygenase inhibitor (indomethacin). To study a possible interaction between nitric oxide and prostaglandin synthesis in the acute phase of allergic conjunctivitis, the levels of nitrite and PGE2 were determined in lavage fluid. The prophylactic use of L-NAME on the formation of conjunctival edema in response to topical PGD2 administration was studied by measurement of albumin levels in lavage fluid. Both nitric oxide and PGE2 are synthesized in response to antigen provocation and after histamine administration. Nitric oxide and PGE2 are produced simultaneously in the conjunctiva and they showed identical synthesis profiles in response to antigen provocation. Pretreatment with L-NAME inhibited the synthesis of PGE2 whereas exogenous administration of nitric oxide increased the level of PGE2 in lavage fluid. Prophylactic treatment with L-NAME significantly inhibited the PGD2 induced albumin extravasation. Nitric oxide seems to play an important role in the acute phase of allergic conjunctivitis it may stimulate PGE2 production and acts as a secondary mediator in PGD2 and histamine induced conjunctival edema.  相似文献   

6.
We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.  相似文献   

7.
Although they are implicated on their own as risk factors for cardiovascular disease, the potential link between nitric oxide (NO) deficiency, ANG II, and vascular stiffening has not been tested before. We evaluated the role of chronic ANG II treatment and NO deficiency, alone and in combination, on aortic stiffness in mice and tested parameters contributing to increases in active or passive components of vascular stiffness, including blood pressure, vascular smooth muscle contractility, and extracellular matrix components. Untreated (control) mice and mice treated with a NO synthase (NOS) inhibitor [N(omega)-nitro-L-arginine methyl ester (L-NAME), 0.5 g/l] were implanted with osmotic minipumps delivering ANG II (500 ng.kg(-1).min(-1)) for 28 days. Aortic stiffness was then measured in vivo by pulse wave velocity (PWV) and ex vivo by load-strain analysis to obtain values of maximal passive stiffness (MPS). Blood pressure and aortic contractility ex vivo were measured. ANG II treatment or NOS inhibition with L-NAME did not independently increase vascular stiffness; however, the combined treatments worked synergistically to increase PWV and MPS. The combined treatments of ANG II + L-NAME also significantly increased aortic wall collagen content while decreasing elastin. These novel results suggest that NO deficiency and ANG II act synergistically to increase aortic stiffness in mice predominantly via changes in aortic wall collagen/elastin ratio.  相似文献   

8.
Many individuals with cardiac diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of physical training and chronic nitric oxide synthase (NOS) inhibitor (nitro-L-arginine methyl ester, L-NAME) treatment on blood pressure (BP), heart rate (HR) and cardiac oxidant/antioxidant systems in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control (SC), (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, s.c. for 8 weeks) and (4) ET+L-NAME. BP and HR were monitored with tail-cuff method. The animals were sacrificed 24 h after last treatments and hearts were isolated and analyzed. Physical conditioning significantly increased respiratory exchange ratio (RER), cardiac nitric oxide (NO) levels, NOS activity and endothelial (eNOS) and inducible (iNOS) protein expression. Training significantly enhanced cardiac glutathione (GSH) levels, GSH/GSSG ratio and up-regulation of cardiac copper/zinc-superoxide dismutase (CuZn-SOD), manganese (Mn)-SOD, catalase (CAT), glutathione peroxidase (GSH-Px) activity and protein expression. Training also caused depletion of cardiac malondialdehyde (MDA) and protein carbonyls. Chronic L-NAME administration resulted in depletion of cardiac NO level, NOS activity, eNOS, nNOS and iNOS protein expression, GSH/GSSG ratio and down-regulation of cardiac CuZn-SOD, Mn-SOD, CAT, GSH-PX, glutathione-S-transferase (GST) activity and protein expression. Chronic L-NAME administration enhanced cardiac xanthine oxidase (XO) activity, MDA levels and protein carbonyls. These biochemical changes were accompanied by increases in BP and HR after L-NAME administration. Interaction of training and NOS inhibitor treatment resulted in normalization of BP, HR and up-regulation of cardiac antioxidant defense system. The data suggest that physical conditioning attenuated the oxidative injury caused by chronic NOS inhibition by up-regulating the cardiac antioxidant defense system and lowering the BP and HR in rats.  相似文献   

9.
The purpose of this study was to determine the necessity of nitric oxide (NO) for hypertrophy and fiber-type transition in overloaded (OL) skeletal muscle. Endogenous NO production was blocked by administering N(G)-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/ml; approximately 100 mg x kg-1 x day-1) in drinking water. Thirty-eight female Sprague-Dawley rats (approximately 250 g) were randomly divided into four groups: control-nonoverloaded (Non-OL), control-OL, L-NAME-Non-OL, and L-NAME-OL. Chronic overload of the plantaris was induced bilaterally by surgical removal of the gastrocnemius and soleus. Rats in the Non-OL groups received sham surgeries. L-NAME treatment began 24 h before surgery and continued until the rats were killed 14 days postsurgery. Although OL induced hypertrophy in both control (+76%) and L-NAME (+39%) conditions (P < 0.05), mean plantaris-to-body mass ratio in the L-NAME-OL group was significantly lower (P < 0.05) than that in the control-OL group. Microphotometric analysis of histochemically determined fiber types revealed increases in cross-sectional area (P < 0.05) for all fiber types (types I, IIA, and IIB/X) in the OL plantaris from control rats, whereas L-NAME-OL rats exhibited increases only in type I and IIB/X fibers. SDS-PAGE analysis of myosin heavy chain (MHC) composition in the plantaris indicated a significant (P < 0.05) OL effect in the control rats. Specifically, the mean proportion of type I MHC increased 6% (P < 0.05), whereas the proportion of type IIb MHC decreased approximately 9% (P < 0.05). No significant OL effects on MHC profile were observed in the L-NAME rats. These data support a role of NO in overload-induced skeletal muscle hypertrophy and fiber-type transition.  相似文献   

10.
The roles of nitric oxide (NO) and plasma renin activity (PRA) in the depressor response to chronic administration of Tempol in spontaneously hypertensive rats (SHR) are not clear. The present study was done to determine the effect of 2 wk of Tempol treatment on blood pressure [mean arterial pressure (MAP)], oxidative stress, and PRA in the presence or absence of chronic NO synthase inhibition. SHR were divided into four groups: control, Tempol (1 mmol/l) alone, nitro-L-arginine methyl ester (L-NAME, 4.5 mg x g(-1).day(-1)) alone, and Tempol + L-NAME or 2 wk. With Tempol, MAP decreased by 22%: 191 +/- 3 and 162 +/- 21 mmHg for control and Tempol, respectively (P < 0.05). L-NAME increased MAP by 16% (222 +/- 2 mmHg, P < 0.01), and L-NAME + Tempol abolished the depressor response to Tempol (215 +/- 3 mmHg, P < 0.01). PRA was not affected by Tempol but was increased slightly with L-NAME alone and 4.4-fold with L-NAME + Tempol. Urinary nitrate/nitrite increased with Tempol and decreased with L-NAME and L-NAME + Tempol. Tempol significantly reduced oxidative stress in the presence and absence of L-NAME. In conclusion, in SHR, Tempol administration for 2 wk reduces oxidative stress in the presence or absence of NO, but in the absence of NO, Tempol is unable to reduce MAP. Therefore, NO, but not changes in PRA, plays a major role in the blood pressure-lowering effects of Tempol. These data suggest that, in hypertensive individuals with endothelial damage and chronic NO deficiency, antioxidants may be able to reduce oxidative stress but not blood pressure.  相似文献   

11.
We studied the effect of a nitric oxide synthase inhibitor, Nomega-Nitro-L-arginine-methyl-ester (L-NAME), on in vitro diphragmatic function both at rest (control) or after inspiratory resistive loading (IRL). Sprague-Dawley rats were anesthetized, instrumented, and then the following experimental groups: (1) controls; (2) L-NAME (100 mg/kg/body weight intravenously alone); (3) IRL alone; and (4) L-NAME + IRL. The IRL protocol consisted of applying a variable resistor to the inspiratory limb of a two-way valve at 70% of maximal airway pressure until apnea. After the experiment, the animals were sacrificed and diaphragmatic strips were obtained for activity of constitutive nitric oxide synthase (cNOS) and measurements of in vitro contractile properties: tetanic (Po) and twitch tensions (Pt). cNOS activity was significantly decreased in the L-NAME and L-NAME + IRL groups (P < or = 0.05) as compared with control and IRL groups. L-NAME alone did not affect Po or Pt. However, in both IRL groups, with and without was a significant decrease in Po and Pt. This reduction was comparable in both groups. In summary, our data showed that L-NAME resulted in a significant decrease cNOS activity, but in vitro contractility was impaired.  相似文献   

12.
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P < 0.05), 3) cardiomyocyte protein mass increased (P = NS), 4) cardiomyocyte protein synthesis ([14C]phenylalanine incorporation) increased (P < 0.05), 5) expression of skeletal alpha-actin, atrial natriuretic peptide, brain natriuretic peptide, and ET-1 mRNAs was enhanced (P < 0.05) in LV but not RV cardiomyocytes at 20 and 50 mg x kg(-1) x day(-1), respectively, and 6) expression of adrenomedullin, receptor activity-modifying protein 3 (RAMP3), and RAMP2 (but not calcitonin receptor-like receptor and RAMP1) mRNAs was increased by L-NAME (20 mg x kg(-1) x day(-1)) in LV. In conclusion, L-NAME enhanced protein synthesis in both LV and RV cardiomyocytes but elicited a hypertrophic phenotype accompanied by altered expression of the counterregulatory peptide adrenomedullin and receptor components (RAMP2, RAMP3) in LV only, indicating that the former is due to impaired nitric oxide synthesis, whereas the phenotypic changes are due to pressure overload.  相似文献   

13.
Because the effects of calcium supplementation on arterial tone in nitric oxide-deficient hypertension are unknown, we investigated the influence of elevating dietary calcium from 1.1 to 3.0% in Wistar rats treated with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg. kg(-1). day(-1)) for 8 wk. A high-calcium diet attenuated the development of hypertension induced by L-NAME and abrogated the associated impairments of endothelium-independent mesenteric arterial relaxations to nitroprusside, isoproterenol, and cromakalim. Endothelium-dependent relaxations to acetylcholine during nitric oxide synthase inhibition in vitro were decreased in L-NAME rats and improved by calcium supplementation. The inhibition of cyclooxygenase by diclofenac augmented the responses to acetylcholine in L-NAME rats but not in calcium + L-NAME rats. When hyperpolarization of smooth muscle was prevented by KCl precontraction, the responses to acetylcholine during combined nitric oxide synthase and cyclooxygenase inhibition were similar in all groups. Furthermore, superoxide dismutase enhanced the acetylcholine-induced relaxations in L-NAME rats but not in calcium + L-NAME rats. In conclusion, calcium supplementation reduced blood pressure during chronic nitric oxide synthase inhibition and abrogated the associated impairments in endothelium-dependent and -independent arterial relaxation. The augmented vasorelaxation after increased calcium intake in L-NAME hypertension may be explained by enhanced hyperpolarization and increased sensitivity to nitric oxide in arterial smooth muscle and decreased vascular production of superoxide and vasoconstrictor prostanoids.  相似文献   

14.
Microinjection of acetylcholine chloride (ACh) in the nucleus of the solitary tract (NTS) of awake rats caused a transient and dose-dependent hypotension and bradycardia. Because it is known that cardiovascular reflexes are affected by nitric oxide (NO) produced in the NTS, we investigated whether these ACh-induced responses depend on NO in the NTS. Responses to ACh (500 pmol in 100 nl) were strongly reduced by ipsilateral microinjection of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol in 100 nl) in the NTS: mean arterial pressure (MAP) fell by 50 +/- 5 mmHg before L-NAME to 9 +/- 4 mmHg, 10 min after L-NAME, and HR fell by 100 +/- 26 bpm before L-NAME to 20 +/- 10 bpm, 10 min after L-NAME (both P < 0.05). Microinjection of the selective inhibitor of neuronal nitric oxide synthase (nNOS), 1-(2-trifluoromethylphenyl) imidazole (TRIM; 13.3 nmol in 100 nl), in the NTS also reduced responses to ACh: MAP fell from 42 +/- 3 mmHg before TRIM to 27 +/- 6 mmHg, 10 min after TRIM (P < 0.05). TRIM also tended to reduce ACh-induced bradycardia, but this effect was not statistically significant. ACh-induced hypotension and bradycardia returned to control levels 30-45 min after NOS inhibition. Control injections with D-NAME and saline did not affect resting values or the response to ACh. In conclusion, injection of ACh into the NTS of conscious rats induces hypotension and bradycardia, and these effects may be mediated at least partly by NO produced in NTS neurons.  相似文献   

15.
We investigated the effects of the nitric oxide (NO) donor molsidomine and the nitric oxide synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME) on pulmonary endothelin (ET)-1 gene expression and ET-1 plasma levels in chronic hypoxic rats. Two and four weeks of hypoxia (10% O2) significantly increased right ventricular systolic pressure, the medial cross-sectional vascular wall area of the pulmonary arteries, and pulmonary ET-1 mRNA expression (2-fold and 3.2-fold, respectively). ET-1 plasma levels were elevated after 4 wk of hypoxia. In rats exposed to 4 wk of hypoxia, molsidomine (15 mg x kg(-1) x day(-1)) given either from the beginning or after 2 wk of hypoxia significantly reduced pulmonary hypertension, pulmonary vascular remodeling, pulmonary ET-1 gene expression, and ET-1 plasma levels. L-NAME administration (45 mg x kg(-1) x day(-1)) in rats subjected to 2 wk of hypoxia did not modify these parameters. Our findings suggest that in chronic hypoxic rats, exogenously administered NO acts in part by suppressing the formation of ET-1. In contrast, inhibition of endogenous NO production exerts only minor effects on the pulmonary circulation and pulmonary ET-1 synthesis in these animals.  相似文献   

16.
Local warming of skin induces vasodilation by unknown mechanisms. To test whether nitric oxide (NO) is involved, we examined effects of NO synthase (NOS) inhibition with NG-nitro-L-arginine methyl ester (L-NAME) on vasodilation induced by local warming of skin in six subjects. Two adjacent sites on the forearm were instrumented with intradermal microdialysis probes for delivery of L-NAME and sodium nitroprusside. Skin blood flow was monitored by laser-Doppler flowmetry (LDF) at microdialysis sites. Local temperature (Tloc) of the skin at both sites was controlled with special LDF probe holders. Mean arterial pressure (MAP; Finapres) was measured and cutaneous vascular conductance calculated (CVC = LDF/MAP = mV/mmHg). Data collection began with a control period (Tloc at both sites = 34 degrees C). One site was then warmed to 41 degrees C while the second was maintained at 34 degrees C. Local warming increased CVC from 1.44 +/- 0.41 to 4.28 +/- 0.60 mV/mmHg (P < 0.05). Subsequent L-NAME administration reduced CVC to 2.28 +/- 0.47 mV/mmHg (P < 0.05 vs. heating), despite the continued elevation of Tloc. At a Tloc of 34 degrees C, L-NAME reduced CVC from 1.17 +/- 0.23 to 0.75 +/- 0.11 mV/mmHg (P < 0.05). Administration of sodium nitroprusside increased CVC to levels no different from those induced by local warming. Thus NOS inhibition attenuated, and sodium nitroprusside restored, the cutaneous vasodilation induced by elevation of Tloc; therefore, the mechanism of cutaneous vasodilation by local warming requires NOS generation of NO.  相似文献   

17.
To test whether nitric oxide (NO) is involved in prostaglandin (PG) F2alpha-induced regression of the bovine corpus luteum (CL) in vivo, heifers were treated as follows: Group 1, saline (3 ml/h); Group 2, dinoprost, an analogue of prostaglandin F2alpha (aPGF2alpha; 5 mg/0.5 h); Group III, Nomega-nitro-L-arginine methyl ester (L-NAME; 200 mg/4 h), an inhibitor of nitric oxide synthase; and Group IV, L-NAME (400 mg/4 h) and aPGF2alpha (5 mg/0.5 h). All treatments were administered by an intraluteal microdialysis system (MDS) on day 15 of the cycle. Perfusate and jugular plasma samples were collected at half-hour intervals; additionally, jugular plasma samples were collected once daily from day 16 to day 21 of the cycle. In the perfusate samples, aPGF2alpha increased P4 (P < 0.05), PGE2 (P < 0.001), and LTC4 (P < 0.05) concentrations; L-NAME increased P4 (P < 0.05) but did not change PGE2 and LTC4 (P > 0.05) concentrations as compared with the period before treatment. Simultaneous perfusion of CL with L-NAME and aPGF2alpha caused a further increase of P4 concentration (P < 0.05) induced by L-NAME or aPGF2alpha treatment and increased PGE2 and LTC4 (P < 0.001) concentrations to the level observed after aPGF2alpha treatment. Perfusion of CL with aPGF2alpha caused luteal regression within 24 h, while perfusion with L-NAME prolonged the life span of CL to day 21 (P < 0.05). Concomitant L-NAME and aPGF2alpha treatment partially counteracted (P < 0.05) the luteal regression caused by aPGF2alpha administration. These results show that NO is involved in the process of luteolysis in the bovine CL and suggest that the luteolytic effect of aPGF2alpha may be mediated by NO as an important component of an autocrine/paracrine luteolytic cascade.  相似文献   

18.

Background

Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes.

Methods

Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening.

Results

Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued.

Conclusions

Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.  相似文献   

19.
Mycoplasma pneumoniae (Mp) has been linked to chronic asthma. Airway remodeling (e.g., airway collagen deposition or fibrosis) is one of the pathological features of chronic asthma. However, the effects of respiratory Mp infection on airway fibrosis in asthma remain unclear. In the present study, we hypothesized that respiratory Mp infection may increase the airway collagen deposition in a murine model of allergic airway inflammation in part through upregulation of transforming growth factor (TGF)-beta1. Double (2 wk apart) inoculations of Mp or saline (control) were given to mice with or without previous allergen (ovalbumin) challenges. On days 14 and 42 after the last Mp or saline, lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analyses of collagen and TGF-beta1 at protein and mRNA levels. In allergen-na?ve mice, Mp did not alter airway wall collagen. In allergen-challenged mice, Mp infections did not change airway wall collagen deposition on day 14 but increased the airway collagen on day 42; this increase was accompanied by increased TGF-beta1 protein in the airway wall and reduced TGF-beta1 protein release from the lung tissue into BAL fluid. Our results suggest that Mp infections could modulate airway collagen deposition in a murine model of allergic airway inflammation with TGF-beta1 involved in the collagen deposition process.  相似文献   

20.
Repair of injured tendon is a very slow process and involves the release of many molecules, including nitric oxide. We investigate the influence of local nitrergic inhibition in histological and functional recovery of injured Achilles tendon. A standard murine model of tendon injury by rupture was used. The animals were divided into three experimental groups: control, injury + vehicle (normal saline) and injury + Nω-nitro-L-arginine methyl ester (L-NAME). The products were injected into the paratendinous region every 2 days and body weight gain and Achilles functional index (AFI) were evaluated on days 0, 7, 14 and 21 after tendon injury. On day 21 post-injury, the animals were killed to evaluate nitric oxide production and tissue organization. We observed that tendon surgical division led to increased tissue nitrite levels, which were reduced in L-NAME-treated rats. The AFI revealed functional recovery of L-NAME-treated animals on day 21 post-injury, which was not observed in the saline-treated group. Microscopic analysis of hematoxylin-eosin staining and collagen autofluorescence showed that L-NAME-treated rats had more aligned areas of collagen fibers and that the diameter of newly organized collagen in this group was also greater than that in the vehicle-treated one. We demonstrate that local treatment with L-NAME significantly improves the functional parameters and accelerates histomorphological recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号