首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model. Compared with controls, fresh Sur1KO islets showed slightly elevated basal [Ca(2+)](c) and insulin secretion. In 15 mm glucose, the absolute rate of secretion was approximately 3-fold lower in Sur1KO than control islets, with only poor increase above base line. Overnight culture of Sur1KO islets in 10 mm glucose (not in 5 mm) augmented basal insulin secretion and considerably improved the response to 15 mm glucose, which reached higher values than in control islets, in which culture had little impact. Glucose stimulation during KCl depolarization showed that the amplifying pathway is functional in fresh and cultured Sur1KO islets. The differences in insulin secretion between fresh and cultured Sur1KO islets and between Sur1KO and control islets were not attributable to differences in insulin content, glucose oxidation rate, or synchronization of [Ca(2+)](c) oscillations. The unmasking of glucose-induced insulin secretion in beta-cells lacking K(ATP) channels is paradoxically due to improvement in the production of a triggering signal (elevated [Ca(2+)](c)). The results show that K(ATP) channels are not the only transducer of glucose effects on [Ca(2+)](c) in beta-cells. They explain controversies in the literature and refute arguments raised against the model implicating an amplifying pathway in glucose-induced insulin secretion.  相似文献   

2.
Liu YJ  Vieira E  Gylfe E 《Cell calcium》2004,35(4):357-365
The glucagon-releasing pancreatic alpha-cells are electrically excitable cells but the signal transduction leading to depolarization and secretion is not well understood. To clarify the mechanisms we studied [Ca(2+)](i) and membrane potential in individual mouse pancreatic alpha-cells using fluorescent indicators. The physiological secretagogue l-adrenaline increased [Ca(2+)](i) causing a peak, which was often followed by maintained oscillations or sustained elevation. The early effect was due to mobilization of Ca(2+) from the endoplasmic reticulum (ER) and the late one to activation of store-operated influx of the ion resulting in depolarization and Ca(2+) influx through voltage-dependent L-type channels. Consistent with such mechanisms, the effects of adrenaline on [Ca(2+)](i) and membrane potential were mimicked by inhibitors of the sarco(endo)plasmic reticulum Ca(2+) ATPase. The alpha-cells express ATP-regulated K(+) (K(ATP)) channels, whose activation by diazoxide leads to hyperpolarization. The resulting inhibition of the voltage-dependent [Ca(2+)](i) response to adrenaline was reversed when the K(ATP) channels were inhibited by tolbutamide. However, tolbutamide alone rarely affected [Ca(2+)](i), indicating that the K(ATP) channels are normally closed in mouse alpha-cells. Glucose, which is the major physiological inhibitor of glucagon secretion, hyperpolarized the alpha-cells and inhibited the late [Ca(2+)](i) response to adrenaline. At concentrations as low as 3mM, glucose had a pronounced stimulatory effect on Ca(2+) sequestration in the ER amplifying the early [Ca(2+)](i) response to adrenaline. We propose that adrenaline stimulation and glucose inhibition of the alpha-cell involve modulation of a store-operated current, which controls a depolarizing cascade leading to opening of L-type Ca(2+) channels. Such a control mechanism may be unique among excitable cells.  相似文献   

3.
In normal beta-cells glucose induces insulin secretion by activating both a triggering pathway (closure of K(ATP) channels, depolarization, and rise in cytosolic [Ca(2+)](i)) and an amplifying pathway (augmentation of Ca(2+) efficacy on exocytosis). It is unclear if and how nutrients can regulate insulin secretion by beta-cells lacking K(ATP) channels (Sur1 knockout mice). We compared glucose- and amino acid-induced insulin secretion and [Ca(2+)](i) changes in control and Sur1KO islets. In 1 mm glucose (non-stimulatory for controls), the triggering signal [Ca(2+)](i) was high (loss of regulation) and insulin secretion was stimulated in Sur1KO islets. This "basal" secretion was decreased or increased by imposed changes in [Ca(2+)](i) and was dependent on ATP production, indicating that both triggering and amplifying signals are involved. High glucose stimulated insulin secretion in Sur1KO islets, by an unsuspected, transient increase in [Ca(2+)](i) and a sustained activation of the amplifying pathway. Unlike controls, Sur1KO islets were insensitive to diazoxide and tolbutamide, which rules out effects of either drug at sites other than K(ATP) channels. Amino acids potently increased insulin secretion by Sur1KO islets through both a further electrogenic rise in [Ca(2+)](i) and a metabolism-dependent activation of the amplifying pathway. After sulfonylurea blockade of their K(ATP) channels, control islets qualitatively behaved like Sur1KO islets, but their insulin secretion rate was consistently lower for a similar or even higher [Ca(2+)](i). In conclusion, fuel secretagogues can control insulin secretion in beta-cells without K(ATP) channels, partly by an unsuspected influence on the triggering [Ca(2+)](i) signal and mainly by the modulation of a very effective amplifying pathway.  相似文献   

4.
Pancreatic islets have a central role in blood glucose homeostasis. In addition to insulin-producing beta-cells and glucagon-secreting alpha-cells, the islets contain somatostatin-releasing delta-cells. Somatostatin is a powerful inhibitor of insulin and glucagon secretion. It is normally secreted in response to glucose and there is evidence suggesting its release becomes perturbed in diabetes. Little is known about the control of somatostatin release. Closure of ATP-regulated K(+)-channels (K(ATP)-channels) and a depolarization-evoked increase in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) have been proposed to be essential. Here, we report that somatostatin release evoked by high glucose (>or=10 mM) is unaffected by the K(ATP)-channel activator diazoxide and proceeds normally in K(ATP)-channel-deficient islets. Glucose-induced somatostatin secretion is instead primarily dependent on Ca(2+)-induced Ca(2+)-release (CICR). This constitutes a novel mechanism for K(ATP)-channel-independent metabolic control of pancreatic hormone secretion.  相似文献   

5.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

6.
This study examined the effect of nitric oxide (NO) on the cytosolic free Ca(2+) concentration ([Ca(2+)](c)) of alpha-cells isolated from rat pancreatic islets. When extracellular glucose was reduced from 7 to 0 mM, about half of the alpha-cells displayed [Ca(2+)](c) oscillations. Nicardipine, a Ca(2+) channel blocker, terminated the oscillations, while thapsigargine, an inhibitor of Ca(2+)-ATPase on the endoplasmic reticulum, did not affect them, suggesting that the [Ca(2+)](c) oscillations were produced by periodic Ca(2+) influx via L-type voltage-operated Ca(2+) channels. NOC 7, an NO donor, did not cause any changes in [Ca(2+)](c) at 7 mM glucose, but reduced [Ca(2+)](c) or terminated [Ca(2+)](c) oscillations at 0 or 2.8 mM glucose. A similar inhibitory effect on [Ca(2+)](c) of alpha-cells was caused by 8-bromo-cGMP. When the [Ca(2+)](c) of alpha-cells was elevated by L-arginine in the presence of N(omega)-nitro-L-arginine, an NO synthase inhibitor, the subsequent application of NOC 7 and 8-bromo-cGMP reduced [Ca(2+)](c). As there is a direct relationship between [Ca(2+)](c) and glucagon release, these results suggest that the NO-cGMP system in rat pancreatic islets reduces glucagon release by suppressing [Ca(2+)](c) responses in alpha-cells.  相似文献   

7.
AMP-activated protein kinase (AMPK) is an important signaling effector that couples cellular metabolism and function. The effects of AMPK activation on pancreatic beta-cell function remain unresolved. We used 5-amino-imidazole carboxamide riboside (AICAR), an activator of AMPK, to define the signaling mechanisms linking the activation of AMPK with insulin secretion. Application of 300 microM AICAR to mouse islets incubated in 5-14 mM glucose significantly increased AMPK activity and potentiated insulin secretion. AICAR inhibited ATP-sensitive K(+) (K(ATP)) channels and increased the frequency of glucose-induced calcium oscillations in islets incubated in 8-14 mM glucose. At lower glucose concentration (5mM) AICAR did not affect K(ATP) activity or intracellular ([Ca(2+)](i)). AICAR also did not inhibit (86)Rb(+) efflux from islets isolated from Sur1(-/-) mice that lack K(ATP) channels yet significantly potentiated glucose stimulated insulin secretion. Our data suggest that AICAR stimulates insulin secretion by both K(ATP) channel-dependent and -independent pathways.  相似文献   

8.
9.
This study was undertaken to examine the role of K(+) channels on cytosolic Ca(2+) ([Ca(2+)](i)) in insulin secreting cells. [Ca(2+)](i) was measured in single glucose-responsive INS-1 cells using the fluorescent Ca(2+) indicator Fura-2. Glucose, tolbutamide and forskolin elevated [Ca(2+)](i) and induced [Ca(2+)] oscillations. Whereas the glucose effect was delayed and observed in 60% and 93% of the cells, in a poorly and a highly glucose-responsive INS-1 cell clone, respectively, tolbutamide and forskolin increased [Ca(2+)](i) in all cells tested. In the latter clone, glucose induced [Ca(2+)](i) oscillations in 77% of the cells. In 16% of the cells a sustained rise of [Ca(2+)](i) was observed. The increase in [Ca(2+)](i) was reversed by verapamil, an L-type Ca(2+) channel inhibitor. Adrenaline decreased [Ca(2+)](i) in oscillating cells in the presence of low glucose and in cells stimulated by glucose alone or in combination with tolbutamide and forskolin. Adrenaline did not lower [Ca(2+)](i) in the presence of 30mM extracellular K(+), indicating that adrenaline does not exert a direct effect on Ca(2+) channels but increases K(+) channel activity. As for primary b-cells, [Ca(2+)](i) oscillations persisted in the presence of closed K(ATP) channels; these also persisted in the presence of thapsigargin, which blocks Ca(2+) uptake into Ca(2+) stores. In contrast, in voltage-clamped cells and in the presence of diazoxide (50mM), which hyperpolarizes the cells by opening K(ATP) channels, [Ca(2+)](i) oscillations were abolished. These results support the hypothesis that [Ca(2+)](i) oscillations depend on functional voltage-dependent Ca(2+) and K(+) channels and are interrupted by a hyperpolarization in insulin-secreting cells.  相似文献   

10.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

11.
Sur1 knockout mouse beta-cells lack K(ATP) channels and show spontaneous Ca(2+) action potentials equivalent to those seen in patients with persistent hyperinsulinemic hypoglycemia of infancy, but the mice are normoglycemic unless stressed. Sur1(-/-) islets lack first phase insulin secretion and exhibit an attenuated glucose-stimulated second phase secretion. Loss of the first phase leads to mild glucose intolerance, whereas reduced insulin output is consistent with observed neonatal hyperglycemia. Loss of K(ATP) channels impairs the rate of return to a basal secretory level after a fall in glucose concentration. This leads to increased hypoglycemia upon fasting and contributes to a very early, transient neonatal hypoglycemia. Whereas persistent hyperinsulinemic hypoglycemia of infancy underscores the importance of the K(ATP)-dependent ionic pathway in control of insulin release, the Sur1(-/-) animals provide a novel model for study of K(ATP)-independent pathways that regulate insulin secretion.  相似文献   

12.
The pharmacological properties of slow Ca(2+)-activated K(+) current (K(slow)) were investigated in mouse pancreatic beta-cells and islets to understand how K(slow) contributes to the control of islet bursting, [Ca(2+)](i) oscillations, and insulin secretion. K(slow) was insensitive to apamin or the K(ATP) channel inhibitor tolbutamide, but UCL 1684, a potent and selective nonpeptide SK channel blocker reduced the amplitude of K(slow) tail current in voltage-clamped mouse beta-cells. K(slow) was also selectively and reversibly inhibited by the class III antiarrythmic agent azimilide (AZ). In isolated beta-cells or islets, pharmacologic inhibition of K(slow) by UCL 1684 or AZ depolarized beta-cell silent phase potential, increased action potential firing, raised [Ca(2+)](i), and enhanced glucose-dependent insulin secretion. AZ inhibition of K(slow) also supported mediation by SK, rather than cardiac-like slow delayed rectifier channels since bath application of AZ to HEK 293 cells expressing SK3 cDNA reduced SK current. Further, AZ-sensitive K(slow) current was extant in beta-cells from KCNQ1 or KCNE1 null mice lacking cardiac slow delayed rectifier currents. These results strongly support a functional role for SK channel-mediated K(slow) current in beta-cells, and suggest that drugs that target SK channels may represent a new approach for increasing glucose-dependent insulin secretion. The apamin insensitivity of beta-cell SK current suggests that beta-cells express a unique SK splice variant or a novel heteromultimer consisting of different SK subunits.  相似文献   

13.
Mitochondria shape Ca(2+) signaling and exocytosis by taking up calcium during cell activation. In addition, mitochondrial Ca(2+) ([Ca(2+)](M)) stimulates respiration and ATP synthesis. Insulin secretion by pancreatic beta-cells is coded mainly by oscillations of cytosolic Ca(2+) ([Ca(2+)](C)), but mitochondria are also important in excitation-secretion coupling. Here, we have monitored [Ca(2+)](M) in single beta-cells within intact mouse islets by imaging bioluminescence of targeted aequorins. We find an increase of [Ca(2+)](M) in islet-cells in response to stimuli that induce either Ca(2+) entry, such as extracellular glucose, tolbutamide or high K(+), or Ca(2+) mobilization from the intracellular stores, such as ATP or carbamylcholine. Many cells responded to glucose with synchronous [Ca(2+)](M) oscillations, indicating that mitochondrial function is coordinated at the whole islet level. Mitochondrial Ca(2+) uptake in permeabilized beta-cells increased exponentially with increasing [Ca(2+)], and, particularly, it became much faster at [Ca(2+)](C)>2 microM. Since the bulk [Ca(2+)](C) signals during stimulation with glucose are smaller than 2 microM, mitochondrial Ca(2+) uptake could be not uniform, but to take place preferentially from high [Ca(2+)](C) microdomains formed near the mouth of the plasma membrane Ca(2+) channels. Measurements of mitochondrial NAD(P)H fluorescence in stimulated islets indicated that the [Ca(2+)](M) changes evidenced here activated mitochondrial dehydrogenases and therefore they may modulate the function of beta-cell mitochondria. Diazoxide, an activator of K(ATP), did not modify mitochondrial Ca(2+) uptake.  相似文献   

14.
Glucose is the physiological stimulus for insulin secretion in pancreatic beta cells. The uptake and phosphorylation of glucose initiate and control downstream pathways, resulting in insulin secretion. However, the temporal coordination of these events in beta cells is not fully understood. The recent development of the FLII(12)Pglu-700μ-δ6 glucose nanosensor facilitates real-time analysis of intracellular glucose within a broad concentration range. Using this fluorescence-based technique, we show the shift in intracellular glucose concentration upon external supply and removal in primary mouse beta cells with high resolution. Glucose influx, efflux, and metabolism rates were calculated from the time-dependent plots. Comparison of insulin-producing cells with different expression levels of glucose transporters and phosphorylating enzymes showed that a high glucose influx rate correlated with GLUT2 expression, but was largely also sustainable by high GLUT1 expression. In contrast, in cells not expressing the glucose sensor enzyme glucokinase glucose metabolism was slow. We found no evidence of oscillations of the intracellular glucose concentration in beta cells. Concomitant real-time analysis of glucose and calcium dynamics using FLII(12)Pglu-700μ-δ6 and fura-2-acetoxymethyl-ester determined a glucose threshold of 4mM for the [Ca(2+)](i) increase in beta cells. Indeed, a glucose concentration of 7mM had to be reached to evoke large amplitude [Ca(2+)](i) oscillations. The K(ATP) channel closing agent glibenclamide was not able to induce large amplitude [Ca(2+)](i) oscillations in the absence of glucose. Our findings suggest that glucose has to reach a threshold to evoke the [Ca(2+)](i) increase and subsequently initiate [Ca(2+)](i) oscillations in a K(ATP) channel independent manner.  相似文献   

15.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

16.
Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).  相似文献   

17.
Glucagon secreted from pancreatic alpha-cells plays a critical role in glycemia, mainly by hepatic glucose mobilization. In diabetic patients, an impaired control of glucagon release can worsen glucose homeostasis. Despite its importance, the mechanisms that regulate its secretion are still poorly understood. Since alpha-cells are particularly sensitive to neural and paracrine factors, in this report we studied the role of purinergic receptors and extracellular ATP, which can be released from nerve terminals and beta-cell secretory granules. Using immunocytochemistry, we identified in alpha-cells the P2 receptor subtype P2Y1, as well as the P1 receptors A1 and A2A. In contrast, only P2Y1 and A1 receptors were localized in beta-cells. To analyze the role of purinergic receptors in alpha-cell function, we studied their participation in Ca2+ signaling. At low glucose concentrations, mouse alpha-cells exhibited the characteristic oscillatory Ca2+ signals that lead to secretion. Application of ATP (1-10 microM) abolished these oscillations or reduced their frequency in alpha-cells within intact islets and isolated in culture. ATPgammaS, a nonhydrolyzable ATP derivative, indicated that the ATP effect was mainly direct rather than through ATP-hydrolytic products. Additionally, adenosine (1-10 microM) was also found to reduce Ca2+ signals. ATP-mediated inhibition of Ca2+ signaling was accompanied by a decrease in glucagon release from intact islets in contrast to the adenosine effect. Using pharmacological agonists, we found that only P2Y1 and A2A were likely involved in the inhibitory effect on Ca2+ signaling. All these findings indicate that extracellular ATP and purinergic stimulation are effective regulators of the alpha-cell function.  相似文献   

18.
Pancreatic beta-cells are biological oscillators requiring a coupling force for the synchronization of the cytoplasmic Ca(2+) oscillations responsible for pulsatile insulin release. Testing the idea that transients, superimposed on the oscillations, are important for this synchronization, the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) was measured with ratiometric fura-2 technique in single beta-cells and small aggregates prepared from islets isolated from ob/ob-mice. Image analyses revealed asynchronous [Ca(2+)](i) oscillations in adjacent beta-cells lacking physical contact. The addition of glucagon stimulated the firing of [Ca(2+)](i) transients, which appeared in synchrony in adjacent beta-cells. Moreover, the presence of glucagon promoted synchronization of the [Ca(2+)](i) oscillations in beta-cells separated by a distance <100 microm but not in those >200 microm apart. The results support the proposal that the repolarizing effect of [Ca(2+)](i) transients provides a coupling force for co-ordinating the pulses of insulin release generated by pancreatic beta-cells.  相似文献   

19.
Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic β-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluorescence to investigate the role of mitochondria in the generation of plasma membrane potential oscillations in clonal INS-1 832/13 β-cells. Elevated glucose caused oscillations in plasma membrane potential and cytoplasmic free Ca(2+) concentration over the same concentration range required for insulin release, although considerable cell-to-cell heterogeneity was observed. Exogenous pyruvate was as effective as glucose in inducing oscillations, both in the presence and absence of 2.8 mM glucose. Increased glucose and pyruvate each produced a concentration-dependent mitochondrial hyperpolarization. The causal relationships between pairs of parameters (Δψ(p) and [Ca(2+)](c), Δψ(p) and NAD(P)H, matrix ATP and [Ca(2+)](c), and Δψ(m) and [Ca(2+)](c)) were investigated at single cell level. It is concluded that, in these β-cells, depolarizing oscillations in Δψ(p) are not initiated by mitochondrial bioenergetic changes. Instead, regardless of substrate, it appears that the mitochondria may simply be required to exceed a critical bioenergetic threshold to allow release of insulin. Once this threshold is exceeded, an autonomous Δψ(p) oscillatory mechanism is initiated.  相似文献   

20.
Although intracellular Ca(2+) in pancreatic beta-cells is the principal signal for insulin secretion, the effect of chronic elevation of the intracellular Ca(2+) concentration ([Ca(2+)](i)) on insulin secretion is poorly understood. We recently established two pancreatic beta-cell MIN6 cell lines that are glucose-responsive (MIN6-m9) and glucose-unresponsive (MIN6-m14). In the present study we have determined the cause of the glucose unresponsiveness in MIN6-m14. Initially, elevated [Ca(2+)](i) was observed in MIN6-m14, but normalization of the [Ca(2+)](i) by nifedipine, a Ca(2+) channel blocker, markedly improved the intracellular Ca(2+) response to glucose and the glucose-induced insulin secretion. The expression of subunits of ATP-sensitive K(+) channels and voltage-dependent Ca(2+) channels were increased at both mRNA and protein levels in MIN6-m14 treated with nifedipine. As a consequence, the functional expression of these channels at the cell surface, both of which are decreased in MIN6-m14 without nifedipine treatment, were increased significantly. Contrariwise, Bay K8644, a Ca(2+) channel agonist, caused severe impairment of glucose-induced insulin secretion in glucose-responsive MIN6-m9 due to decreased expression of the channel subunits. Chronically elevated [Ca(2+)](i), therefore, is responsible for the glucose unresponsiveness of MIN6-m14. The present study also suggests normalization of [Ca(2+)](i) in pancreatic beta-cells as a therapeutic strategy in treatment of impaired insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号