首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine “normal” cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

2.
Loss of connexin expression and/or gap junctional communication (GJC) has been correlated with increased rates of cell growth in tumor cells compared to their normal communication-competent counterparts. Conversely, reduced rates of cell growth have been observed in tumor cells that are induced to express exogenous connexins and re-establish GJC. It is not clear how this putative growth-suppressive effect of the connexin proteins is mediated and some data has suggested that this function may be independent of GJC. In mammalian cells that express v-Src, connexin43 (Cx43) is phosphorylated on Tyr247 and Tyr265 and this results in a dramatic disruption of GJC. Cells that express a Cx43 mutant with phenylalanine mutations at these tyrosine sites form functional gap junctions that, unlike junctions formed by wild type Cx43, remain functional in cells that co-express v-Src. These cells still appear transformed; however, it is not known whether their ability to maintain GJC prevents the loss of growth restraints that confine "normal" cells, such as the inability to grow in an anchorage-independent manner or to form foci. In these studies, we have examined some of the growth properties of cells with Cx43 gap junctions that remain communication-competent in the presence of the co-expressed v-Src oncoprotein.  相似文献   

3.
《Epigenetics》2013,8(5):602-609
Gap junctions are specialized plasma membrane domains consisting of channels formed by members of the connexin protein family. Gap junctional intercellular communication is often lost in cancers due to aberrant localization or downregulation of connexins, and connexins are therefore suggested to act as tumor suppressor genes in various tissues. The aim of this study was to investigate the expression pattern and DNA promoter methylation status of connexins in colorectal cancer. Expression of six (GJA1, GJA9, GJB1, GJB2, GJC1 and GJD3) connexin genes was detected in normal colonic tissue samples. GJC1 expression was reduced in colorectal carcinomas compared to normal tissue samples. All analyzed connexins were hypermethylated in colon cancer cell lines, although at various frequencies. GJA4, GJB6 and GJD2 were hypermethylated in 60% (29/48), 25% (12/48) and 96% (46/48) of primary colorectal carcinomas, respectively. However, the methylation status was not associated with gene expression. GJC1 has two alternative promoters, which were methylated in 42% (32/76) and 38% (25/65) of colorectal tumors, and in none of the normal mucosa samples. Expression of GJC1 was significantly lower in methylated compared with unmethylated samples (p < 0.01) and was restored in cell lines treated with the demethylating drug 5-aza-2'deoxycytidine. Taken together, DNA hypermethylation of the promoter region of GJC1, encoding connexin45, is an important mechanism in silencing gene expression in colorectal cancer.  相似文献   

4.
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involved are unknown. Chloral hydrate (CH), a by-product of chlorine disinfection of water, is carcinogenic in mice, and we demonstrated that CH reduced GJC in a rat liver epithelial cell line (Clone 9). To examine the mechanism(s) by which CH inhibits GJC, Clone 9 cells treated with CH were examined using Western blot, real-time polymerase chain reaction, immunocytochemical, and dye-communication techniques. Treatment with CH (0.1–5 mM for 24 h) resulted in a dose-dependent inhibition of GJC as measured by Lucifer yellow dye transfer. Western blot analysis demonstrated expression of connexin (Cx) 43 and 26 in control cells and reduced expression of Cx 43 but not Cx 26 protein from 0.1 to 1 mM CH. CH treatment from 2.5 to 5 mM caused an apparent increase in expression of both connexins that was concomitant with a reduction in mRNA expression for both connexins. Similarly, with immunocytochemistry, a dose-dependent decrease in Cx 43 staining at sites of cell–cell contact was apparent in CH (0.5–5 mM)-treated cultures, whereas no Cx 26 staining was observed. Thus, Clone 9 cells contain two types of connexins but only one type of plasma membrane channel. Understanding of the regulation of connexin may shed light on mechanisms responsible for inhibition of GJC by chemical carcinogens.  相似文献   

5.
6.
7.
8.
The development and function of the mammary gland require precise control of gap junctional intercellular communication (GJIC). Here, we review the expression and function of gap junction proteins, connexins, in the normal mouse and human mammary gland. We then discuss the possible tumor-suppressive role of Cx26 and Cx43 in primary breast tumors and through the various stages of breast cancer metastasis and consider whether connexins or GJIC may actually promote tumorigenesis at some stages. Finally, we present in vitro data on the impact of connexin expression on breast cancer cell metastasis to the bone. We observed that Cx43 expression inhibited the invasive and migratory potentials of MDA-MB-231 breast cancer cells in a bone microenvironment, provided by the MC3T3-E1 mouse osteoblastic cell line. Expression of either Cx26 or Cx43 had no effect on MDA-MB-231 growth and adhesion under the influence of osteoblasts and did not result in regulation of osteogenic gene expression in these breast cancer cells. Furthermore, connexin-expressing MDA-MB-231 cells did not have an effect on the growth or differentiation of MC3T3-E1 cells. In summary, we conclude that connexin expression and GJIC are integral to the development and differentiation of the mammary gland. In breast cancer, connexins generally act as tumor suppressors in the primary tumor; however, in advanced breast tumors, connexins appear to act as both context-dependent tumor suppressors and facilitators of disease progression.  相似文献   

9.
10.
Exposure of rat liver epithelial cells to doxorubicin, an anthraquinone derivative widely employed in cancer chemotherapy, led to a dose-dependent decrease in gap junctional intercellular communication (GJC). Gap junctions are clusters of inter-cellular channels consisting of connexins, the major connexin in the cells used being connexin-43 (Cx43). Doxorubicin-induced loss of GJC was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated using inhibitors of ERK activation. Furthermore, activation of the epidermal growth factor (EGF) receptor by doxorubicin was responsible for ERK activation and the subsequent attenuation of GJC. Inhibition of GJC, however, was not by direct phosphorylation of Cx43 by ERK-1/2, whereas menadione, a 1,4-naphthoquinone derivative that was previously demonstrated to activate the same EGF receptor-dependent pathway as doxorubicin, resulting in downregulation of GJC, caused strong phos-phorylation of Cx43 at serines 279 and 282. Thus, ERK-dependent downregulation of GJC upon exposure to quinones may occur both by direct phosphorylation of Cx43 and in a phosphorylation-independent manner.  相似文献   

11.
The role of gap junction membrane channels in development   总被引:11,自引:0,他引:11  
In most developmental systems, gap junction-mediated cell-cell communication (GJC) can be detected from very early stages of embryogenesis. This usually results in the entire embryo becoming linked as a syncytium. However, as development progresses, GJC becomes restricted at discrete boundaries, leading to the subdivision of the embryo into communication compartment domains. Analysis of gap junction gene expression suggests that this functional subdivision of GJC may be mediated by the differential expression of the connexin gene family. The temporal-spatial pattern of connexin gene expression during mouse embryogenesis is highly suggestive of a role for gap junctions in inductive interactions, being regionally restricted in distinct developmentally significant domains. Using reverse genetic approaches to manipulate connexin gene function, direct evidence has been obtained for the connexin 43 (Cx43) gap junction gene playing a role in mammalian development. The challenges in the future are the identification of the target cell populations and the cell signaling processes in which Cx43-mediated cell-cell interactions are critically required in mammalian development. Our preliminary observations suggest that neural crest cells may be one such cell population.  相似文献   

12.
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.  相似文献   

13.
14.
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.  相似文献   

15.
Gap junctional communication plays a vital role in embryogenesis, cell differentiation and the co-ordination of tissue responses. Gap junctions are formed by a family of closely-related proteins called connexins which show tissue-specific patterns of expression. The role of gap junctions in the mammary gland remains unclear. The lumena of mammary gland ducts are lined by luminal cells with an outer layer of basal cells. In rodents, the luminal cells express connexin26 only during pregnancy and lactation and the basal cells, in some reports, express connexin43. In the normal human breast the basal cells express connexin43, although human mammary epithelial cellsin vitrohave been reported to express both connexin26 and connexin43. Analysis of connexin expression at the molecular level is now bringing new insights into the structure and function of gap junctions in a range of normal and pathological cell systems.  相似文献   

16.
Gap junction-mediated intercellular communication (GJC) may play an important role in cell proliferation and transformation since GJC is inhibited by growth factors, oncogenes, tumor promoters, and carcinogens. We have studied inhibition of GJC by platelet-derived growth factor-BB (PDGF) in the mouse fibroblast cell line C3H/10T1/2 and have sought to determine whether PDGF-induced inhibition of GJC is mediated by the PDGF receptor tyrosine kinase (RTK). PDGF-mediated inhibition of GJC was rapid and transient, with maximal inhibition occurring 40 min after PDGF addition and GJC returning to control levels after 70 min. The effect of PDGF on GJC was concentration-dependent, with maximal inhibition of 90% or greater occurring at 10 ng/ml PDGF. Stimulation of RTK activity, as determined by antiphosphotyrosine immunoblot analysis of PDGF receptor and the receptor substrates phospholipase C-γl (PLC-γl) and guanosine triphosphatase activating protein (GAP), was also concentration-dependent. Inhibition of GJC required a greater concentration of PDGF than did stimulation of RTK activity. The tyrosine kinase inhibitor genistein blocked PDGF-induced RTK activity, as measured by PDGF receptor, PLC-γl, and GAP tyrosine phosphorylation, in a concentration-dependent manner but did not affect PDGF-mediated inhibition of GJC. Genistein alone had no effect on GJC or PDGF receptor expression. PDGF treatment in the presence or absence of genistein resulted in phosphorylation of the connexin 43 protein on nontyrosine residues. These results suggest that inhibition of GJC by ligand-activated PDGF receptor is dissociable from the RTK activity responsible for PDGF, PLC-γl, and GAP phosphorylation. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Regulation of connexin expression   总被引:4,自引:0,他引:4  
  相似文献   

18.
The expression of different connexin genes (cx26, cx32, cx37, cx43) that code for the protein subunits of gap junctions, was investigated in various uterine tissues during the estrous cycle of nonpregnant rats, in pregnant rats at decidualization and at term. Connexin gene expression was studied at the mRNA level by Northern blot hybridization and at the protein level by immunocytochemistry. In gap junctions from uterine epithelium, stroma, or myometrium, connexin 26 and/or connexin 43 are much more abundant than connexins 32 and 37. The expression of connexin 26 and 43 appears to be modulated by maternal steroid hormones. High expression of these connexins is found in developing decidual cells by day 7 to 8 post coitum; furthermore, coexpression of connexins 26 and 43 in myometrium is observed just before delivery on day 21 post coitum. In both the decidua and the myometrium, the connexin 26 protein appears to be distributed in lower abundance than connexin 43. In uterine epithelium only connexin 26 is expressed throughout all of the reproductive phases investigated. The enhanced expression of this gene correlates with higher levels of maternal estrogen both in the proestrus/estrus phase and at term. The distinct spatial and temporal pattern of expression of connexins 26 and 43 in different uterine tissues suggests a physiological role for these proteins during embryo implantation and subsequent contraction of the uterus at birth.  相似文献   

19.
20.
A number of studies have contributed to demonstrate that neurons and astrocytes tightly and actively interact. Indeed, the presence of astrocytes in neuronal cultures increases the number of synapses and their efficiency, and thanks to enzymatic and uptake processes, astrocytes play a role in neuroprotection. A typical feature of astrocytes is that they establish cell-cell communication in vitro, as well as in situ, through intercellular channels forming specialized membrane areas defined as gap junctions. These channels are composed of junctional proteins termed connexins (Cxs): in astrocytes connexin 43 (Cx43) and 30 (Cx30) have been shown to prevail. Several recent works indicate that gap junctional communication (GJC) and/or connexin expression in astrocytes are controlled by neurons. Altogether, these observations lead to the concept that neuronal and astrocytic networks interact through mutual setting of their respective mode of communication and that astrocyte gap junctions represent a target in neuroglial interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号