首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The results of a whole year experiment on the outdoor mass culture of Spirulina maxima strain 4Mx on fertilized sea-water are reported. Carbonate and phosphate precipitation in the sea-water media was prevented by maintaining a low concentration of phosphate and by controlling the pH in the range of 8.0–8.3. The mean annual yield of biomass on sea-water plus urea as nitrogen source was 7.35 g (dry weight) m-2· day-1, a value slightly lower than that obtained on the standard bicarbonate medium (8.14 g · m-2 · day-1). On sea-water plus nitrate the yield was only 5.2 g·m-2·day-1. The nitrogen content of the biomass was higher in summer and lower in winter. The seasonal effect was more evident when nitrate was the nitrogen source.  相似文献   

2.
Huertas IE  Espie GS  Colman B  Lubian LM 《Planta》2000,211(1):43-49
 Inorganic carbon (Ci) uptake and efflux has been investigated in the marine microalga Nannochloropsis gaditana Lubian by monitoring CO2 fluxes in cell suspensions using mass spectrometry. Addition of H13CO3 to cell suspensions in the dark caused a transient increase in the CO2 concentration in the medium far in excess of the equilibrium CO2 concentration. The magnitude of this release was dependent on the length of time the cells had been kept in the dark. Once equilibrium between the Ci species had been achieved, a CO2 efflux was observed after saturating light intensity was applied to the cells. External carbonic anhydrase (CA) was not detected nor does this species demonstrate a capacity to take up CO2 by active transport. Photosynthetic O2 evolution and the release CO2 in the dark depend on HCO3 uptake since both were inhibited by the anion exchange inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The bicarbonate uptake mechanism requires light but can also continue for short periods in the dark. Ethoxyzolamide, a CA inhibitor, markedly inhibited CO2 efflux in the dark, indicating that CO2 efflux was dependent upon the intracellular dehydration of HCO3 . These results indicate that Nannochloropsis possesses a bicarbonate uptake system which causes the accumulation of high intracellular Ci levels and an internal CA which maintains the equilibrium between CO2 and HCO3 and thus causes a subsequent release of CO2 to the external medium. Received: 20 September 1999 / Accepted: 25 October 1999  相似文献   

3.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

4.
Synechocystis sp. PCC 6701 has a brilliantly colored pigment, phycobiliprotein containing phycoerythrin. Culture medium was optimized by sequential designs in order to maximize phycobiliprotein production. The observed fresh weights after 6 days were 0.58 g/L in BG-11, 0.83 g/L in medium for Scenedesmus sp. and 0.03∼0.52 g/L in the other tested media. Medium for Scenedesmus sp. was selected to be optimized by fractional factorial design and central composite design since the medium maintained a more stable pH within a desirable range due to higher contents of phosphate. The fractional factorial design had seven factors with two levels: KNO3, NaNO3, NaH2PO4, Na2HPO4, Ca(NO3)2, FeEDTA, and MgSO4. From the result of fractional factorial design, nitrate and phosphate were identified as significant factors. A central composite design was then applied with four variables at five levels each: nitrate, phosphate, pH, and light intensity. Parameters such as fresh weight and phycobiliprotein contents were used to determine the optimum value of the four variables. The proposed optimum media contains 0.88 g/L of nitrate, 0.32 g/L of phosphate under 25 μE·m−2·s−1 of light intensity. The maximum phycobiliprotein contents have been increased over 400%, from 4.9 to 25.9 mg/L after optimization.  相似文献   

5.
Summary A comparison of light and dark short-term incorporation of [14C]-carbon dioxide by Rhodospirillum rubrum grown in turbidostat continuous-flow culture at two different steady states on medium containing malate has shown that the labelling of phosphate esters was the main light-dependent process. Thus, the reductive pentose phosphate cycle appears to be the major pathway of carbon dioxide assimilation in the light under these growth conditions.The labelling of glutamate was also light-dependent and was most marked in the most rapidly growing steady state culture.The assimilated [14C]carbon was transferred to metabolites of the tricarboxylic acid cycle, particularly C4-dicarboxylic acids, and the transfer involved additional carboxylations which were not light-dependent. The activity of these reactions accounted for initial high rates of carbon dioxide assimilation in the dark.In the dark assimilated [14C]carbon accumulated in succinate.  相似文献   

6.
Klaus Winter 《Planta》1982,154(4):298-308
Properties of phosphoenolpyruvate (PEP) carboxylase, obtained from leaves of Mesembryanthemum crystallinum L. performing Crassulacean acid metabolism (CAM), were determined at frequent time points during a 12-h light/12-h dark cycle. Leaf extracts were rapidly desalted and PEP carboxylase activity as a function of PEP concentration, malate concentration, and pH was measured within 2 min after homogenization of the tissue. Maximum velocity of PEP carboxylase was similar in the light and dark at pH 7.5 and pH 8.0. However, PEP carboxylase had as much as a 12-fold lower K m for PEP and as much as a 20-fold higher K i for malate during the dark than during the light periods, the magnitude of these differences being dependent on the assay pH. Assuming that enzyme properties immediately after isolation reflect the approximate state of the enzyme in vivo, these differences in enzyme properties reduce the potential for CO2 fixation via PEP carboxylase in the light. A small decrease in cytoplasmic pH in the light would greatly magnify the above differences in day/night properties of PEP carboxylase, because the sensitivity of PEP carboxylase to inhibition by malate increased with decreasing pH. Properties of PEP carboxylase were also studied in plants exposed to short-term perturbations of the normal 12-h light/12-h dark cycle (e.g., prolonged light period, prolonged dark period). Under all light/dark regimes, there was a close correlation between change in properties of PEP carboxylase and changes of the tissue from acidification to deacidification, and vice versa. Changes in properties of PEP carboxylase were not merely light/dark phenomena because they were also observed in plants exposed to continuous light or dark. the data indicate that, during CAM, PEP carboxylase exists in two stages which differ in their capacity for net malate synthesis. The physiologically-active state is distinguished by a low K m for PEP and a high K i for malate and favors malate synthesis. The physiologically-inactive state has a high K m for PEP and a low K i for malate and exists during periods of deacidification and other periods lacking synthesis of malic acid.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - PEPC PEP carboxylase - RuBP ribulose 1,5-bisphosphate - RH relative humidity  相似文献   

7.
Olisthodiscus luteus is a unicellular biflagellate alga which contains many small discoidal chloroplasts. This naturally wall-less organism can be axenically maintained on a defined nonprecipitating artificial seawater medium. Sufficient light, the presence of bicarbonate, minimum mechanical turbulence, and the addition of vitamin B12 to the culture medium are important factors in the maintenance of a good growth response. Cells can be induced to divide synchronously when subject to a 12-hour light/12-hour dark cycle. The chronology of cell division, DNA synthesis, and plastid replication has been studied during this synchronous growth cycle. Cell division begins at hour 4 in the dark and terminates at hour 3 in the light, whereas DNA synthesis initiates 3 hours prior to cell division and terminates at hour 10 in the dark. Synchronous replication of the cell's numerous chloroplasts begins at hour 10 in the light and terminates almost 8 hours before cell division is completed. The average number of chloroplasts found in an exponentially growing synchronous culture is rather stringently maintained at 20 to 21 plastids per cell, although a large variability in plastid complement (4-50) is observed within individual cells of the population. A change in the physiological condition of an Olisthodiscus cell may cause an alteration of this chloroplast complement. For example, during the linear growth period, chloroplast number is reduced to 14 plastids per cell. In addition, when Olisthodiscus cells are grown in medium lacking vitamin B12, plastid replication continues in the absence of cell division thereby increasing the cell's plastid complement significantly.  相似文献   

8.
Summary The uptake of labelled phosphate, especially the incorporation in the organic, in TCA soluble phosphate compounds of the unicellular green alga Ankistrodesmus braunii is markedly stimulated by Na+ more in the light but is stimulated in the dark as well (Na+-effect). This stimulation depends on the phosphate concentration and on the sodium concentration of the medium (optimum 10-3M NaCl) and appears in short-time incorporations (1 min) only at low phosphate concentrations (10-7 to 10-5 m PO4). In addition the Na+-effect depends on temperature and almost disappears at 1°C. The incorporation of 32P in the dark is strongly inhibited by 2,4-dinitrophenol (DNP) and under this condition only a very samll increase of the 32P incorporation by Na+ can be measured. In the light however the same concentration of DNP has only a low effect on 32P incorporation in case no Na+ is present in the medium. If Na+ is present in the medium, the effect of DNP on 32P incorporation is increased in the light. The Na+-effect in the light is also inhibited by di-chlorophenyl-1,1-dimethylurea (DCMU) in N2-atmosphere. High concentrations of g-Strophantin (10-3 m) inhibit the uptake of phosphate by Ankistrodesmus; the inhibition is more increased in the presence of KCl than in the presence of NaCl. The results clearly indicate, that Na+ will not effect the incorporation of labelled phosphate by means of influencing passive processes of phosphate diffusion or phosphate exchange, but acts on different energy-requiring processes of phosphorylation in dark and light. At present one could conclude, that Na+ acts less through a mechanism of a sodium pump, but rather affects the formation of energy-rich compounds (in the dark by way of the oxydative phosphorylation, in the light perhaps by means of the non-cyclic photosynthetic phosphorylation).  相似文献   

9.
The relationship between the abundance of nitrogenase and its activity was studied in the marine unicellular cyanobacterium Gloeothece sp. 68DGA cultured under different light/dark regimens. The Fe‐ and MoFe‐protein of nitrogenase and nitrogen (N2)‐fixing (acetylene reduction) activity were detected only during the dark phase when the cells were grown under a 12 h light/12 h dark cycle (12L/12D). Nitrogenase activity appeared about 4 h after entering the dark phase. Maximum nitrogenase activity occurred at around the middle of the dark phase, and the activity rapidly decreased to zero before the start of the light phase. The rapid decrease of nitrogenase activity and the Fe‐protein of nitrogenase near the end of the dark phase in 12L/12D were partly recovered by the addition of l ‐methionine‐sulfoximine, an inhibitor of glutamine synthetase. Diurnal oscillation of the abundance of nitrogenase was maintained in the first subjective dark phase (i.e. the period corresponding to the dark phase) after the cells were transferred from 12L/12D to continuous illumination. However, enzyme activity was detected only when photosynthetic oxygen (O2) evolution was completely suppressed by reducing the light intensity or by the addition of 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea. Nitrogenase always appeared in the cells about 16 h after starting the light phase, even when the 12L/12D cycle was modified by the addition or subtraction of a single 6 h period of light or dark. These results suggest the following: (i) N2‐fixation by Gloeothece sp. 68DGA is primarily regulated by an endogenous circadian oscillator at the level of nitrogenase synthesis. (ii) The endogenous circadian rhythm resets on a shift of the timing of the light phase. (iii) Nitrogenase activity is not always reflected in the presence of nitrogenase. (iv) The activity of nitrogenase is negatively regulated by fixed nitrogen and the concentration of ambient O2.  相似文献   

10.
Summary The effects of carbon dioxide and of bicarbonate on cell division were studied on synchronized cells of the high-temperature green alga, Chlorella 7-11-05. After 7 hours of growth in nutrient medium in light, cells were centrifuged and resuspended in distilled water or in bicarbonate and placed in darkness. Atmospheric air, or a mixture of carbon dioxide and air, was bubbled through algal suspensions during the dark period. In distilled water cells readily divided in atmospheric air but not in 1% (2.6·10-4 M) or in higher concentrations of carbon dioxide. The suspension of cells in bicarbonate counteracted the inhibitory action of carbon dioxide. A minimum molar concentration of bicarbonate necessary to counteract the inhibitory effect of carbon dioxide was found to be equal to the molar concentration of carbon dioxide in the suspending fluid. The highest concentration of carbon dioxide, the adverse effect of which could not be balanced by any concentration of bicarbonate, was found to be in the vicinity of 1.3·10-2 M (50% CO2 in air). Possible effects on cell division of the change in Ph and the implicated role of carbon dioxide in normal and neoplastic growth were discussed.  相似文献   

11.
The induction kinetics of the 680 nm chlorophyll fluorescence were measured on attached leaves of Kalanchoë daigremontiana R. Hamet et Perr. (CAM plant), Sedum telephium L. and Sedum spectabile Bor. (C3 plant in spring, CAM plant in summer) and Raphanus sativus L. (C3 plant) at three different times during a 12/12 h day/night cycle. During the fluorescence transient the fluorescence intensity at the O, P and T-level (fO, fmax, fst,) was different for the plant species tested; this may be due to their different leaf structure, pigment composition and organization of their photosystems. The kinetics of the fluorescence induction depended on the time of preillumination or dark adaptation during the light/dark cycle but not on the type of primary CO2 fixation mechanism (C3 and CAM). For dark adapted leaves measured either at the end of the dark phase or after dark adaptation of plants taken from the light phase a higher P-level fluorescence, a higher variable fluorescence (P-O) and a larger complementary area were found than for leaves of plants taken directly from the light phase. This indicates the presence of largely oxidized photosystem 2 acceptor pools during darkness. During the light phase the fluorescence decline after the P-level was faster than during the dark phase; from this we conclude that the light adaptation of the photosynthetic apparatus (state 1state 2 transition, pH) during the induction period proceeded faster in plants taken from the light phase than in plants taken from the dark phase.Abbreviations C3 plant plant with primary CO2 fixation on ribulose-1,5-bis-phosphate (Calvin-Benson cycle) - CAM Crassulacean Acid Metabolism  相似文献   

12.
It has been suggested that turbulence with the resultant light/dark cycle and light gradient through which phytoplankton move, enhances their productivity. The stationary bottle incubation technique for estimating rates of primary productivity has mainly been criticized because of bottle effects, the elimination of natural turbulence and the presence of photo-inhibition. In a series of experiments where productivity was measured over static profiles and compared to the productivity in a mixed system, no definite conclusion could be reached regarding the effect of varying light/dark cycles of medium frequency (seconds to minutes). It appeared as though the ratio of the euphotic depth to mixing depth (Z eu/Z m) influenced productivity more than the duration of the light/dark cycle. The static bottle incubation method gave higher integral productivities than the mixed samples at low ratio's ofZ eu/Z m. It is suggested that mixing has two separate, but synergistic effects i.e. it not only moves the phytoplankton cells through a light/dark cycle, but also decreases the boundary layer, which increases the rate of exchange through the cell wall of nutrients and metabolites. In doing so more nutrients are available and light could be utilized more efficiently and therefore, productivity is increased.  相似文献   

13.
Uptake of phosphate in the light by Amphidinium carterae, Amphidinium klebsii, cultured and symbiotic Gymnodinium microadriaticum conformed to Michaelis-Menten type saturation kinetics with all organisms showing similar K m values, namely 0.005 to 0.016 M phosphorus. V max values were 0.009–0.32 nmol phosphorus · 105 cells-1 · 10 min-1. Phosphate uptake by all the dinoflagellates was greater in the dark than in the light. The metabolic inhibitor 3-(3,4-dichlorophenyl) 1,1-dimethylurea stimulated phosphate uptake in the light by A. carterae and A. klebsii, but inhibited uptake by cultured and symbiotic G. microadriaticum. Carbonylcyanide 3-chlorophenylhydrazone (CCCP) inhibited phosphate uptake by A. carterae and A. klebsii under both light and dark conditions. Uptake of phosphate by cultured and symbiotic G. microadriaticum in the light, but not in the dark, was inhibited by CCCP. Low concentrations of arsenate (5 g As · l-1) stimulated phosphate by A. carterae and A. klebsii, but inhibited uptake by cultured and symbiotic G. microadriaticum. High concentrations of arsenate (100 g As · l-1) did not affect uptake of phosphate by A. carterae and A. klebsii.  相似文献   

14.
Respiration of blue-green algae in the light   总被引:1,自引:0,他引:1  
The CO2 evolution in the light of Anabaena as well as several other blue-green algae is below 10% of the dark control. Addition of DCMU restores CO2 evolution in the light almost to the dark level. Furthermore, by adding unlabeled NaHCO3, a 14CO2 release is observed with prelabeled algal cells attaining 15 to 100% of dark control. Analysis by double-reciprocal plots exhibits a competitive relationship between added and endogenously released carbon dioxide. We conclude that CO2 evolved by respiration is immediately refixed in the light without being liberated.The degree of 14CO2 release induced by unlabeled bicarbonate in the light allows to determine true photoinhibition of respiration. Anabaena variabilis Kütz. exhibits almost no inhibition while in eight other species respiration is light-inhibited between 50 and 85% of the dark control.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TCA trichloroacetic acid  相似文献   

15.
Wolfgang Kowallik 《Planta》1969,87(4):372-384
Summary Under anaerobiosis the pH-value of the medium (0.002 M phosphate buffer) of a chlorophyll-free, carotenoid-containing mutant of Chlorella vulgaris (211-11h/20) drops slowly due to the excretion of acid fermentation end products. Blue light enhances this acidification of the medium (Figs. 1 and 2). Preliminary determinations of glycolic acid (color reaction with 2,7-dihydroxynaphthalene) indicate that there is about twice as much of this compound in the medium of an anaerobic culture kept in blue light as there is in the medium of one kept in the dark.Addition of oxygen after a period of anaerobiosis in darkness or in blue light results in a greater O2-uptake by the previously illuminated cells (Fig. 3), indicating aerobic consumption of the acids released under nitrogen. The latter is proven by the experiment shown in Fig. 4, in which parallel cell samples develop a greater O2-consumption when suspended in the isolated media (phosphate buffer) of anaerobic cultures of the same organism instead of in fresh phosphate buffer, and a greater O2-consumption when suspended in the medium of an illuminated rather than in that of a dark anaerobic culture.In experiments in which acid production is determined by measurement of the amount of 0.01 N NaOH required to keep the pH constant (Fig. 5), it can be shown that even traces of blue light can be effective in increasing the acidification of the medium of anaerobically kept cells; application of about 250 ergs cm-2 sec-1 of 455 nm yields half-saturation (Fig. 6). Wavelengths around 470 and 370 nm are most effective in increasing this acid excretion; there is a minimum of activity around 400 nm and no effect at all with yellow, red and far-red light (Fig. 7).From the similarity between these intensity and spectral dependences and those for a light stimulation in respiration of the same organism found earlier (Kowallik, 1967), and from the fact that the acids released into the medium under anaerobiosis can be respired by the algae, we feel that both these increases are based on the same light reaction. The action of blue light in bringing about an enhancement in respiration might then consist in furnishing additional substrate.  相似文献   

16.
The nutrient saturated growth and the competition between Limnothrix redekei and some spring diatoms for phosphate were studied in semi-continuous cultures at 10°C with a 6/18 h light/dark cycle and at 15 °C with a 12/12 light/dark cycle. Under these conditions in unialgal cultures, the maximum specific growth rate of Limnothrix redekei was two to three time lower than that of the diatoms. However, Limnothrix redekei was the superior competitor for phosphate under both conditions in mixed cultures. The diatoms in mixed cultures from each species with Limnothrix redekei were competitively displaced but at a different rate. This allowed the diatoms to be ranked in terms of their competitive ability for phosphate at 10°C as follows: Synedra acus > Asterionella formosa > Stephanodiscus minutulus > Nitzschia acicularis > Cyclotella meneghiniana > Stephanodiscus neoastrea > Stephanodiscus hantzschii. The competitive ability of Limnothrix redekei at 15 °C was increased and the rank order of diatoms slightly changed. The hypothesis that cyanobacteria are promoted by phosphate because they are inferior competitors for phosphate is incorrect for Limnothrix redekei.  相似文献   

17.
Sucrose‐phosphate synthase (SPS) activity measured under limiting substrate and in the presence of inorganic phosphate as an allosteric inhibitor (Vlim activity) from the leaves of Prosopis juliflora was earlier observed to respond rapidly and reversibly to light/dark transitions ( Sinha et al. 1997b,c ). The experiments therefore, were conducted to study the potential regulation of the enzyme by a mechanism of phosphorylation/dephosphorylation. The desalted extract of the enzyme prepared from irradiated leaves showed a time‐dependent spontaneous inactivation of the Vlim activity when the extract was preincubated and an additional inactivation when incubated with ATP. The spontaneous inactivation is not inhibited by phosphatase inhibitors but the ATP‐dependent inactivation was abolished when either 5′‐p‐fluorosulphonylbenzoadenosine (FSBA) or glucose‐6‐phosphate (G6P), (both reported as inhibitors for the SPS‐protein kinase from spinach) was included during preincubation. FSBA also prevented the dark inactivation of SPS in the leaves of P. juliflora when fed through the transpiration stream. The activity of SPS measured under the Vmax condition remained relatively unaffected by ATP or FSBA. The desalted extract prepared from darkened leaves on the other hand, when preincubated at 25°C showed a time‐dependent increase in the Vlim activity and the activation state of the enzyme. The spontaneous activation observed during preincubation appears to be due to the dephosphorylation of the enzyme and is strongly inhibited by okadaic acid, a potent protein phosphatase inhibitor. Alternately, feeding okadaic acid to excised leaves in the dark also blocked the subsequent light activation of Vlim activity. These results are consistent with the assumption that the light/dark regulation of Vlim activity observed in the leaves of P. juliflora was mediated through a dephosphorylation/phosphorylation mechanism.  相似文献   

18.
Combined dark and photo-fermentation was carried out to study the feasibility of biological hydrogen production. In dark fermentation, hydrogen was produced by Enterobacter cloacae strain DM11 using glucose as substrate. This was followed by a photo-fermentation process. Here, the spent medium from the dark process (containing unconverted metabolites, mainly acetic acid etc.) underwent photo-fermentation by Rhodobacter sphaeroides strain O.U.001 in a column photo-bioreactor. This combination could achieve higher yields of hydrogen by complete utilization of the chemical energy stored in the substrate. Dark fermentation was studied in terms of several process parameters, such as initial substrate concentration, initial pH of the medium and temperature, to establish favorable conditions for maximum hydrogen production. Also, the effects of the threshold concentration of acetic acid, light intensity and the presence of additional nitrogen sources in the spent effluent on the amount of hydrogen produced during photo-fermentation were investigated. The light conversion efficiency of hydrogen was found to be inversely proportional to the incident light intensity. In a batch system, the yield of hydrogen in the dark fermentation was about 1.86 mol H2 mol−1 glucose; and the yield in the photo-fermentation was about 1.5–1.72 mol H2 mol−1 acetic acid. The overall yield of hydrogen in the combined process, considering glucose as the preliminary substrate, was found to be higher than that in a single process.  相似文献   

19.
The cells used in the present investigation had a phosphate content of about 20 per cent as compared with the status in normal cultures. The uptake of phosphate during a period of 4 hours was determined at a pH of 6,5, kept constant with the aid of a citrate buffer. In the absence of CO2, light increased the uptake of phosphate with saturation around 14,000 erg/cm2s. With 5 per cent CO2 in the air the relationship was more complicated, and the uptake of phosphate must he related to more than one process during active photosynthesis. The inhibiting effect of CO2 in air was noticeable already at low concentrations both in light and in darkness. With the system used, this supports earlier indications for internal recycling of orthophosphate, CO2 was inhibiting also in nitrogen in the light. Selenate in a concentration of 2 mM gave a slight and rather irregular inhibition.—Anaerobiosis had no effect in the light but gave a large decrease in the dark.—DNP (0.1 mM) was somewhat more active in the dark than in the light. The lower concentrations tested had no effect in either case.—Menadione (0.1 mM) inhibited strongly, and more in illuminated than in non-illuminated cells.  相似文献   

20.
Summary Mutant strains of Anabaena cycadeae Reinke have been isolated after ultra-violet irradiation. All the four mutants described appear to be stable. They have been identified on the basis of their pigment composition, nutritional requirements, photoautotrophic growth and reaction to light. Strain 10 M 1 L is a non-nitrogen-fixing mutant as indicated by its inability to grow on basal medium (AA) deficient in combined nitrogen. Strain 10 M 1 L /10 M 1 D is apochlorotic, and grows very slowly on medium AA-3 both in light and dark but comparatively better under the latter condition. Strain 10 M 1 L /10 M 2 D is deficient in -carotenoid, photosensitive and able to grow in dark only on AA-3 medium while strain 10 M 1 L /10 M 3 D is a photoheterotrophic nitrogen-fixer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号