首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.  相似文献   

2.
3.
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.  相似文献   

4.
Drug-induced suppression of female schistosome sexual maturation is an auspicious strategy to combat schistosomiasis since the eggs are the causative agent. The establishment of drug targets requires knowledge about the molecular mechanisms that regulate the development of the female reproductive organs, which include vitellarium and ovary. This review summarizes recent studies suggesting tyrosine kinases as important factors for the regulation of female gonad development. In this context, especially cytoplasmatic tyrosine kinases of the Src class seem to play dominant roles. Moreover, experimental data and theoretical concepts are provided supporting a crosstalk between tyrosine kinase and TGFbeta signaling in the production of vitellocytes. Finally, we take advantage from the schistosome genome project to propose a model for the regulation of vitelline-cell production and differentiation.  相似文献   

5.
Schistosoma mansoni genome project: an update   总被引:4,自引:0,他引:4  
A schistosome genome project was initiated by the World Health Organization in 1994 with the notion that the best prospects for identifying new targets for drugs, vaccines, and diagnostic development lie in schistosome gene discovery, development of chromosome maps, whole genome sequencing and genome analysis. Schistosoma mansoni has a haploid genome of 270 Mb contained on 8 pairs of chromosomes. It is estimated that the S. mansoni genome contains between 15000 and 25000 genes. There are approximately 16689 ESTs obtained from diverse libraries representing different developmental stages of S. mansoni, deposited in the NCBI EST database. More than half of the deposited sequences correspond to genes of unknown function. Approximately 40-50% of the sequences form unique clusters, suggesting that approximately 20-25% of the total schistosome genes have been discovered. Efforts to develop low resolution chromosome maps are in progress. There is a genome sequencing program underway that will provide 3X sequence coverage of the S. mansoni genome that will result in approximately 95% gene discovery. The genomics era has provided the resources to usher in the era of functional genomics that will involve microarrays to focus on specific metabolic pathways, proteomics to identify relevant proteins and protein-protein interactions to understand critical parasite pathways. Functional genomics is expected to accelerate the development of control and treatment strategies for schistosomiasis.  相似文献   

6.
A series of recent papers has indicated that widespread genomic rearrangements take place in the genome of schistosomes during the life cycle of the parasite. These results have been controversial since genomic rearrangements are not common in eukaryotes, probably because excessive genome plasticity would carry a heavy evolutionary price. Here, Karen Clough, Alec Drew and Paul Brindley present data that ostensibly support the concept of widespread genomic rearrangements, but for which they suggest a different interpretation. They conclude that artefactual contamination of schistosome genome preparations with host DNA can probably explain the Southern hybridization results which led to the original hypothesis of developmental, genomic rearrangements.  相似文献   

7.
Draft genome sequences for Schistosoma japonicum and S. mansoni are now available. The schistosome genome encodes ~13,000 protein-encoding genes for which the functions of few are well understood. Nonetheless, the new genes represent potential intervention targets, and molecular tools are being developed to determine their importance. Over the past 15 years, noteworthy progress has been achieved towards development of tools for gene manipulation and transgenesis of schistosomes. A brief history of genetic manipulation is presented, along with a review of the field with emphasis on reports of integration of transgenes into schistosome chromosomes.  相似文献   

8.
Smalpha is a short interspersed element (SINE)-like retroposon that occurs in high copy number of the genome of the human blood fluke Schistosoma mansoni. The sequence of the consensus Smalpha element includes the hallmark features of SINE-like elements including a promoter region for RNA polymerase III, an AT-rich stretch at its 3'-terminus, a short length of 500 bp or less, and short direct repeat sequences flanking the insertion site. Interestingly, the sequence of Smalpha also encodes an active ribozyme bearing a hammerhead domain. Contrary to the recent findings of Ferbeyre et al. (Mol. Cell. Biol. 18 (1998) 3880-8) that indicated that Smalpha-like elements were absent from the genome of the Oriental blood fluke Schistosoma japonicum, we report here that the genome of S. japonicum does contain a family of Smalpha-like retroposons, elements that we have named the Sjalpha family. Like Smalpha, Sjalpha elements are SINE-like in structure and sequence, are present at high copy number interspersed throughout the S. japonicum genome, and contain an ostensibly functional, hammerhead ribozyme motif. The presence of these elements in all species of Schistosoma so far examined suggests that the hammerhead domain was acquired by vertical transmission from a common schistosome ancestor.  相似文献   

9.
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals.  相似文献   

10.
11.
12.
In an effort to provide useful information about parasites important in tropical diseases, the WHO has initiated genome mapping projects for a number of parasites. One goal of this effort is to establish physical maps of the genomes of the targeted parasites. Multicellular parasites (helminths) contain various numbers of chromosomes, some large, that condense during the cell cycle. Here Hirohisa Hirai and Phil LoVerde present details of fluorescence in situ hybridization as a means to localize genes and DNA fragments to schistosome chromosomes. Although the techniques presented are for schistosome chromosomes, they are applicable to any system where the chromosomes condense at metaphase.  相似文献   

13.
Schistosomes are considered the most important of the helminth parasites of humans in terms of morbidity and mortality. Schistosomes employ proteolytic enzymes to digest host hemoglobin from ingested human blood, including a cathepsin D-like, aspartic protease that is overexpressed in the gut of the adult female schistosome. Because of its key role in parasite nutrition, this enzyme represents a potential intervention target. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cathepsin D gene locus of Schistosoma mansoni. Using the cDNA encoding S. mansoni cathepsin D as a probe, we isolated several positive bacterial artificial chromosomes (BAC) from a BAC library that represents an approximately 8-fold coverage of the schistosome genome. Sequencing of BAC clone 25-J-24 revealed that the cathepsin D gene locus was approximately 13 kb in length, and included seven exons interrupted by six introns. The exons ranged in length from 49 to 294 bp, and the introns from 30 to 5025 bp. The genomic organization of schistosome cathepsin D was similar in sequence, structure and complexity to human cathepsin D, including to a greater or lesser extent the conservation of all six exon/intron boundaries of the schistosome gene. It was less similar to aspartic protease genes of the nematodes Caenorhabditis elegans and Haemonchus contortus, and dissimilar to those of plasmepsins from malarial parasites. Examination of the introns revealed the presence of endogenous mobile genetic elements including SR2, the ASL-associated retrotransposon, and the SINE-like element, SMalpha. Phylogenetically, schistosome cathepsin D appeared to be more closely related to mammalian cathepsin D than to other sub-families of eukaryotic aspartic proteases known from mammals. Taken together, these features indicated that schistosome cathepsin D is a platyhelminth orthologue of mammalian lysosomal cathepsin D.  相似文献   

14.
Schistosome transcriptome analysis at the cutting edge   总被引:5,自引:0,他引:5  
  相似文献   

15.
The view of the schistosome host-parasitic relationship has changed in the past two decades. Previously, it was thought the parasite simply defended itself in the face of a hostile host environment. However, it is now realized that the host-parasite interaction is much more of a dynamic interplay, where the parasite is able to exploit host homeostatic mechanisms for survival, maturity and transmission. Here, Jay Modha, Clare Roberts and John Kusel discuss the recent identification of serine protease inhibitors (serpins) on the schistosome surface and suggest how their properties might be exploited by the parasite.  相似文献   

16.
17.
18.
19.

Background

Schistosomiasis, caused by infection with the blood fluke Schistosoma, is responsible for greater than 200,000 human deaths per annum. Objective high-throughput screens for detecting novel anti-schistosomal targets will drive ‘genome to drug’ lead translational science at an unprecedented rate. Current methods for detecting schistosome viability rely on qualitative microscopic criteria, which require an understanding of parasite morphology, and most importantly, must be subjectively interpreted. These limitations, in the current state of the art, have significantly impeded progress into whole schistosome screening for next generation chemotherapies.

Methodology/Principal Findings

We present here a microtiter plate-based method for reproducibly detecting schistosomula viability that takes advantage of the differential uptake of fluorophores (propidium iodide and fluorescein diacetate) by living organisms. We validate this high-throughput system in detecting schistosomula viability using auranofin (a known inhibitor of thioredoxin glutathione reductase), praziquantel and a range of small compounds with previously-described (gambogic acid, sodium salinomycin, ethinyl estradiol, fluoxetidine hydrochloride, miconazole nitrate, chlorpromazine hydrochloride, amphotericin b, niclosamide) or suggested (bepridil, ciclopirox, rescinnamine, flucytosine, vinblastine and carbidopa) anti-schistosomal activities. This developed method is sensitive (200 schistosomula/well can be assayed), relevant to industrial (384-well microtiter plate compatibility) and academic (96-well microtiter plate compatibility) settings, translatable to functional genomics screens and drug assays, does not require a priori knowledge of schistosome biology and is quantitative.

Conclusions/Significance

The wide-scale application of this fluorescence-based bioassay will greatly accelerate the objective identification of novel therapeutic lead targets/compounds to combat schistosomiasis. Adapting this bioassay for use with other parasitic worm species further offers an opportunity for great strides to be made against additional neglected tropical diseases of biomedical and veterinary importance.  相似文献   

20.
Schistosoma mansoni is 1 of the causative agents of schistosomiasis, an endemic disease in 76 countries of the world. The study of its genome, estimated to be 270 Mb, is very important to understanding schistosome biology, the mechanisms of drug resistance, and immune evasion. Repetitive elements constitute more than 40% of the S. mansoni genome and may play a role in the parasite evolution. The retrotransposons Boudicca, a long terminal repeat (LTR), and Perere 03, a non-LTR, are present in a high number in the S. mansoni genome and were localized with the use of fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS). Bacterial artificial chromosomes (BAC) clones containing the retrotransposons Boudicca and Perere 03 were selected by bioinformatic analysis and used as probes in FISH. Using metaphase chromosomes from sporocysts and the FISH and PRINS techniques, we were able to map these retrotransposons. Perere 03 was localized in the euchromatic regions of the short arm of chromosome 2 and Boudicca in the euchromatic regions of the short arm of chromosomes 2 and Z.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号