首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a combination of protein isolation/characterization and molecular cloning, we have demonstrated that the bark of the black mulberry tree (Morus nigra) accumulates large quantities of a galactose-specific (MornigaG) and a mannose (Man)-specific (MornigaM) jacalin-related lectin. MornigaG resembles jacalin with respect to its molecular structure, specificity, and co- and posttranslational processing indicating that it follows the secretory pathway and eventually accumulates in the vacuolar compartment. In contrast, MornigaM represents a novel type of highly active Man-specific jacalin-related lectin that is synthesized without signal peptide or other vacuolar targeting sequences, and accordingly, accumulates in the cytoplasm. The isolation and cloning, and immunocytochemical localization of MornigaG and MornigaM not only demonstrates that jacalin-related lectins act as vegetative storage proteins in bark, but also allows a detailed comparison of a vacuolar galactose-specific and a cytoplasmic Man-specific jacalin-related lectin from a single species. Moreover, the identification of MornigaM provides the first evidence, to our knowledge, that bark cells accumulate large quantities of a cytoplasmic storage protein. In addition, due to its high activity, abundance, and ease of preparation, MornigaM is of great potential value for practical applications as a tool and bioactive protein in biological and biomedical research.  相似文献   

2.
Treatment of whole plants with jasmonic acid methyl ester induces lectin activity in leaves of Oryza sativa, Hordeum vulgare, Triticum vulgare, Secale cereale and Zea mays. Purification and characterization of the lectins revealed that they all have a very similar molecular structure and carbohydrate-binding properties. Further analysis of the cDNA clones encoding the lectins revealed that they all belong to the family of cytoplasmic mannose-specific jacalin-related lectins.  相似文献   

3.
The Oryza sativa lectin, abbreviated Orysata, is a mannose-specific, jacalin-related lectin expressed in rice plants after exposure to certain stress conditions. Expression of a fusion construct containing the rice lectin sequence linked to enhanced green fluorescent protein in Bright Yellow 2 tobacco cells revealed that Orysata is located in the nucleus and the cytoplasm of the plant cell, indicating that it belongs to the class of nucleocytoplasmic jacalin-related lectins. Since the expression level of Orysata in rice tissues is very low the lectin was expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor sequence to direct the recombinant protein into the secretory pathway and express the protein into the medium. Approximately 12 mg of recombinant lectin was purified per liter medium. SDS/PAGE and western blot analysis showed that the recombinant lectin exists in two molecular forms. Far western blot analysis revealed that the 23 kDa lectin polypeptide contains an N-glycan which is absent in the 18.5 kDa polypeptide. Characterization of the glycans present in the recombinant Orysata revealed high-mannose structures, Man9-11 glycans being the most abundant. Glycan array analysis showed that Orysata interacts with high-mannose as well as with more complex N-glycan structures. Orysata has potent anti-human immunodeficiency virus and anti-respiratory syncytial virus activity in cell culture compared with other jacalin-related lectins.  相似文献   

4.
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.  相似文献   

5.
The effects of the lectins concanavalin A, WGA, ricin, abrin, and the mistletoe lectins from Viscum album MLI, MLII, and MLIII on the binding of ligands of the NMDA and sigma receptors in rat hippocampus synaptic plasma membranes were investigated. Binding of [3H]MK-801, [3H]glutamate, [3H]5,7-DCKA, and [3H]glycine to the membranes was decreased by 40-60% after addition of galactose-specific lectins (mistletoe lectins MLI, MLII, ricin, abrin) at concentrations of 0.01 mg/ml, but was not affected by the glucose- and mannose-specific lectin Con A, an acetylglucosamine-specific lectin WGA, or an acetylgalactosamine-specific lectin MLIII. The binding of [3H]SKF 10047 was decreased only in the presence of MLIII and did not change after addition of the other lectins. It is suggested that lectin-sensitive ligand binding sites of sigma- and NMDA receptors are located separately, and that the carbohydrate side chains of the sigma receptor do not participate in the modulation of the NMDA-receptor.  相似文献   

6.
A novel lectin was isolated from leaves of the Japanese cycad, Cycas revoluta Thunb. (gymnosperm), and its characteristics including amino acid composition, molecular mass, carbohydrate binding specificity and partial amino acid sequences were examined. The inhibition analysis of hemagglutinating activity with various sugars showed that the lectin has a carbohydrate-binding specificity similar to those of mannose recognizing, jacalin-related lectins. Partial amino acid sequences of the lysylendopeptic peptides shows that the lectin might have a repeating structure and belong to the jacalin-related lectin family.  相似文献   

7.
Fruit-specific lectins from banana and plantain   总被引:6,自引:0,他引:6  
 One of the predominant proteins in the pulp of ripe bananas (Musa acuminata L.) and plantains (Musa spp.) has been identified as a lectin. The banana and plantain agglutinins (called BanLec and PlanLec, respectively) were purified in reasonable quantities using a novel isolation procedure, which prevented adsorption of the lectins onto insoluble endogenous polysaccharides. Both BanLec and PlanLec are dimeric proteins composed of two identical subunits of 15 kDa. They readily agglutinate rabbit erythrocytes and exhibit specificity towards mannose. Molecular cloning revealed that BanLec has sequence similarity to previously described lectins of the family of jacalin-related lectins, and according to molecular modelling studies has the same overall fold and three-dimensional structure. The identification of BanLec and PlanLec demonstrates the occurrence of jacalin-related lectins in monocot species, suggesting that these lectins are more widespread among higher plants than is actually believed. The banana and plantain lectins are also the first documented examples of jacalin-related lectins, which are abundantly present in the pulp of mature fruits but are apparently absent from other tissues. However, after treatment of intact plants with methyl jasmonate, BanLec is also clearly induced in leaves. The banana lectin is a powerful murine T-cell mitogen. The relevance of the mitogenicity of the banana lectin is discussed in terms of both the physiological role of the lectin and the impact on food safety. Received: 1 December 1999 / Accepted: 31 January 2000  相似文献   

8.
A solubility-insolubility transition assay was used to screen the bark and stems of seven leguminous trees and plants for self-aggregatable lectins. Novel lectins were found in two trees, Robinia pseudoacacia and Wisteria floribunda, but not in the leguminous plants. The Robinia lectin was isolated from coexisting lectin by combined affinity chromatographies on various sugar adsorbents. The purified lectins proved to be differently glycosylated glycoproteins. One lectin exhibited the remarkable characteristics of self-aggregatable lectins: localization in the bark of legume trees, self-aggregation dissociated by N-acetylglucosamine/mannose, and coexistence with N-acetylgalactosamine/galactose-specific lectins, which are potential endogenous receptors. Self-aggregatable lectins are a functional lectin group that can link enhanced photosynthesis to dissociation of glycoproteins.  相似文献   

9.
A plant lectin was isolated from barley (Hordeum vulgare) coleoptiles using acidic extraction and different chromatographic methods. Sequencing of more than 50% of the protein sequence by Edman degradation confirmed a full-length cDNA clone. The subsequently identified open reading frame encodes for a 15 kDa protein which could be found in the soluble fraction of barley coleoptiles. This protein exhibited specificity towards mannose sugar and is therefore, accordingly named as Horcolin (Hordeum vulgare coleoptile lectin). Database searches performed with the Horcolin protein sequence revealed a sequence and structure homology to the lectin family of jacalin-related lectins. Together with its affinity towards mannose, Horcolin is now identified as a new member of the mannose specific subgroup of jacalin-related lectins in monocot species. Horcolin shares a high amino acid homology to the highly light-inducible protein HL#2 and, in addition to two methyl jasmonic acid-inducible proteins of 32.6 and 32.7 kDa where the jasmonic acid-inducible proteins are examples of bitopic chimerolectins containing a dirigent and jacalin-related domain. Immunoblot analysis with a cross-reactive anti-HL#2 antibody in combination with Northern blot analysis of the Horcolin cDNA revealed tissue specific expression of Horcolin in the coleoptiles. The function of Horcolin is discussed in the context of its particular expression in coleoptiles and is then compared to other lectins, which apparently share a related response to biotic or abiotic stress factors.  相似文献   

10.
A cross-linked leucaena (Leucaena leucocephala) seed gum (CLLSG) matrix was prepared for the isolation of galactose-specific lectins by affinity chromatography. The matrix was evaluated for affinity with a known galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). The matrix preparation was simple and inexpensive when compared to commercial galactose-specific matrices (i.e. about 1.5 US dollars/100 ml of matrix). The current method is also useful for the demonstration of the affinity chromatography technique in laboratories. Since leucaena seeds are abundant and inexpensive, and the matrix preparation is easy, CLLSG appears to be a promising tool for the separation of galactose-specific lectins.  相似文献   

11.
Lectins belonging to the jacalin-related lectin family are distributed widely in the plant kingdom. Recently, two mannose-specific lectins having tandem repeat-type structures were discovered in Castanea crenata (angiosperm) and Cycas revoluta (gymnosperm). The occurrence of such similar molecules in taxonomically less related plants suggests their importance in the plant body. To obtain clues to understand their physiological roles, we performed detailed analysis of their sugar-binding specificity. For this purpose, we compared the dissociation constants (K(d)) of Castanea crenata agglutinin (CCA) and Cycas revoluta leaf lectin (CRLL) by using 102 pyridylaminated and 13 p-nitrophenyl oligosaccharides with a recently developed automated system for frontal affinity chromatography. As a result, we found that the basic carbohydrate-binding properties of CCA and CRLL were similar, but differed in their preference for larger N-linked glycans (e.g. Man7-9 glycans). While the affinity of CCA decreased with an increase in the number of extended alpha1-2 mannose residues, CRLL could recognize these Man7-9 glycans with much enhanced affinity. Notably, both lectins also preserved considerable affinity for mono-antennary, complex type N-linked glycans, though the specificity was much broader for CCA. The information obtained here should be helpful for understanding their functions in vivo as well as for development of useful probes for animal cells. This is the first systematic approach to elucidate the fine specificities of plant lectins by means of high-throughput, automated frontal affinity chromatography.  相似文献   

12.
For the first time a sugar receptor (lectin) has been localized by electron microscopy in an invertebrate. The peritrophic membrane of the blowfly larva, Calliphora erythrocephala, is shown here to express lectins with high specificity for mannose. The lectin is restricted to the lumen side of the peritrophic membrane. The surface of the midgut epithelium is devoid of mannose-specific lectins. It is suggested that the midgut epithelium has lost these lectins during the course of evolution in favour of the peritrophic membrane which is secreted by specialized cells only at the beginning of the midgut.Peritrophic membranes and the midgut epithelium lack lectins specific for galactose. The lumen side of the peritrophic membrane of the larvae has mannose and/or glucose residues, and it is densely packed with two species of bacteria, Proteus vulgaris and P. morganii. These also have mannose-specific lectins as well as mannose residues on their pili. The existence of mannose-specific receptors and mannose residues on both, peritrophic membranes and bacteria, leads to the assumption of mutual adherence between the two surfaces.  相似文献   

13.
Banana lectin (Banlec) is a dimeric plant lectin from the jacalin-related lectin family. Banlec belongs to a subgroup of this family that binds to glucose/mannose, but is unique in recognizing internal alpha1,3 linkages as well as beta1,3 linkages at the reducing termini. Here we present the crystal structures of Banlec alone and with laminaribiose (LAM) (Glcbeta1, 3Glc) and Xyl-beta1,3-Man-alpha-O-Methyl. The structure of Banlec has a beta-prism-I fold, similar to other family members, but differs from them in its mode of sugar binding. The reducing unit of the sugar is inserted into the binding site causing the second saccharide unit to be placed in the opposite orientation compared with the other ligand-bound structures of family members. More importantly, our structures reveal the presence of a second sugar binding site that has not been previously reported in the literature. The residues involved in the second site are common to other lectins in this family, potentially signaling a new group of mannose-specific jacalin-related lectins (mJRL) with two sugar binding sites.  相似文献   

14.
Arabinogalactan-protein (AGP, "beta-lectin") was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect beta-linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected beta-glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Binding of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended throughout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.  相似文献   

15.
Carbohydrate-lectin interactions serve as the basis of recognition by phagocytic cells of particles and of various target cells. Such interactions occur in the following systems: between sugars on the surface of the phagocytic cells and lectins on the surface of other cells—the best studied example is the binding of mannose-specific Escherichia coli and related organisms via their surface lectins to oligo-mannose residues on macrophages; between lectins on the surface of phagocytic cells and sugars on particles or other cells—phagocytosis of zymosan and of sialidase-treated erythrocytes, mediated respectively by mannose-specific and galactose-specific lectins on macrophages, belongs to this category; by extracellular lectins that form bridges between sugars on both types of cell—as shown by enhancement of phagocytosis of staphylococci by wheat germ agglutinin, and by lectin-dependent killing of target cells by macrophages. These interactions may play an important role in the activities of phagocytic cells in vivo. They may provide an initial host defense mechanism immediately after microbial infection, operate in tissues where phagocytic activity is poor, and participate in tumor rejection.  相似文献   

16.
A new reagent (blue guaran) for quantitative estimation of lectins, has been derived from a galactomannan (guaran). When the lectin solution is added to an aqueous solution of blue guaran, dye-bound guaran is precipitated from the solution. The difference in absorbance of the blue guaran solution before and after the addition of lectin solution is proportional to the amount of lectin present in the sample. The method of preparation of blue guaran, its spectral characteristics and effect of pH on precipitation have also been described. It gives a simple colorimetric method for the estimation of galactose-specific lectins.  相似文献   

17.
A mannose-specific lectin was isolated from leaves of Neoregeliaflandria, an ornamental plant that belongs to Bromeliaceae,a family of monocotyledons. The amino acid composition and molecularmass of the lectin were similar to those of mannose-specificlectins from other monocotyledons. However, in a test to examinethe inhibition of hemagglutination, it became apparent thatthe isolated lectin recognized D-glucose and N-acetyl D-glucosaminein addition to D-mannose, unlike mannose-specific lectins fromthe monocotyledons that have been reported to date. (Received May 17, 1996; Accepted August 19, 1996)  相似文献   

18.
We have tested whether mannose- and galactose-specific lectins on liver cells are able to bind antibody-antigen complexes and thus function as Fc-receptors. Rat hepatocytes and liver sinusoidal cells were isolated by collagenase perfusion and differential centrifugation. Rat erythrocytes were coated with purified IgM or IgG from rabbits immunized with rat erythrocytes. Both IgM and IgG coated erythrocytes bound to liver macrophages but not to hepatocytes. The binding of IgM and IgG coated red blood cells to liver macrophages could not be blocked by potent inhibitors for mannose- and galactose-specific macrophage lectins such as mannan, D-mannose-bovine serum albumin, N-acetyl-D-galactosamine, D-galactose-bovine serum albumin, or asialofetuin. Although lectin activity is calcium dependent and trypsin sensitive neither condition blocked rosette formation between liver macrophages and opsonized erythrocytes. Thus mannose- and galactose-specific lectins are not involved in the sequestration of IgM- or IgG-antibody-erythrocyte complexes in the liver.  相似文献   

19.
Plant lectins have received a lot of attention because of their insecticidal properties. When orally administered in artificial diet or in transgenic plants, lectins provoke a wide range of detrimental effects, including alteration of the digestive enzyme machinery, fecundity drop, reduced feeding, changes in oviposition behavior, growth and development inhibition and mortality. Although many studies reported the entomotoxicity of lectins, only a few of them investigated the mode of action by which lectins exert toxicity. In the present paper we have studied for the first time the insecticidal potential of the plant lectin from Hippeastrum hybrid (Amaryllis) (HHA) bulbs against the larvae of the cotton leafworm (Spodoptera littoralis). Bioassays on neonate larvae showed that this mannose-specific lectin affected larval growth, causing a development retardation and larval weight decrease. Using primary cell cultures from S. littoralis midguts and confocal microscopy we have elucidated FITC-HHA binding and internalization mechanisms. We found that HHA did not exert a toxic effect on S. littoralis midgut cells, but HHA interaction with the brush border of midgut cells interfered with normal nutrient absorption in the S. littoralis midgut, thereby affecting normal larval growth in vivo. This study thus confirms the potential of mannose-specific lectins as pest control agents and sheds light on the mechanism underlying lectin entomotoxicity.  相似文献   

20.
Background

Galectins—galactose-specific lectins are involved in various types of cell activities, including apoptosis, cell cycle regulation, inflammation and cell transformation. Galectins are implicated in prostate malignat transformation. It is not known yet if prostate glands with different grade of pathologies are expressing different galectins and if these galectins express different effects on the cell viability.

Methods

Cytosolic galactose-spesific lectin fractions from prostate tissue with different diagnosis were purified by affinity chromatography and analyzed by electrophoresis in polyacrylamide gel electrophoresis with sodium dodecyl sulphate. The lectin effects in a source-dependent maner were studied on cell viability on peripheral lymphocytes by MTT reduction method and on apoptosis by flow cytometry method.

Results

Affinity purified galactose-specific lectins fractions from normal and pathological tissue samples are characterized with different protein composition and they express different effects on cell viability and apoptosis.

Conclusion

The effects of cytosolic galactose-specific lectins depend on the source of lectin fraction (glandular tissue disease). We suppose that the released cytosolic galectins from prostatic high grade intraepithelial neoplasia and adenocarcinoma tissue could suppress the immune status of the host patients.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号