首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have shown that phorbol myristate acetate (PMA) enhanced A-23187-induced arachidonate release and thromboxane synthesis in human platelets (Mobley, A., and Tai, H. H. (1985) Biochem. Biophys. Res. Commun. 130, 717-723). The mechanism of enhancement by PMA was not elucidated. In the present study, we have shown that PMA-treated platelets exhibited significantly less [1-14C]arachidonate incorporation than did control platelets. However, no significant change in uptake of labeled linoleate or oleate was observed by PMA treatment. Examination of the two enzyme activities involved in arachidonate incorporation into phospholipids indicated that both arachidonoyl-coenzyme A (CoA) synthase and arachidonoyl-CoA lysophosphatide acyltransferase were inactivated following treatment with PMA or 1-oleoyl-2-acetyl glycerol. When platelets were stimulated with A-23187 plus PMA which produced a significant synergism in thromboxane synthesis, both enzyme activities were substantially less than those in platelets treated with A-23187 alone. In addition to PMA and 1-oleoyl-2-acetyl glycerol induced decreases in both enzyme activities, collagen, a platelet agonist which can activate protein kinase C (Ca2+/phospholipid-dependent enzyme), was also found to cause a concentration-dependent attenuation of both enzyme activities. These results suggest that protein kinase C activation induced by PMA or collagen may cause inactivation of both arachidonoyl-CoA synthase and arachidonoyl-CoA lysophosphatide acyltransferase resulting in inhibition of the reincorporation of arachidonate released by A-23187 and, consequently, greater availability of arachidonate for thromboxane synthesis.  相似文献   

2.
The cycle of deacylation and reacylation of phospholipids plays a critical role in regulating availability of arachidonic acid for eicosanoid production. The major yeast lysophospholipid acyltransferase, Ale1p, is related to mammalian membrane-bound O-acyltransferase (MBOAT) proteins. We expressed four human MBOATs in yeast strains lacking Ale1p and studied their acyl-CoA and lysophospholipid specificities using novel mass spectrometry-based enzyme assays. MBOAT1 is a lysophosphatidylserine (lyso-PS) acyltransferase with preference for oleoyl-CoA. MBOAT2 also prefers oleoyl-CoA, using lysophosphatidic acid and lysophosphatidylethanolamine as acyl acceptors. MBOAT5 prefers lysophosphatidylcholine and lyso-PS to incorporate linoleoyl and arachidonoyl chains. MBOAT7 is a lysophosphatidylinositol acyltransferase with remarkable specificity for arachidonoyl-CoA. MBOAT5 and MBOAT7 are particularly susceptible to inhibition by thimerosal. Human neutrophils express mRNA for these four enzymes, and neutrophil microsomes incorporate arachidonoyl chains into phosphatidylinositol, phosphatidylcholine, PS, and phosphatidylethanolamine in a thimerosal-sensitive manner. These results strongly implicate MBOAT5 and MBOAT7 in arachidonate recycling, thus regulating free arachidonic acid levels and leukotriene synthesis in neutrophils.  相似文献   

3.
The activities of three acylation systems for 1-alkenylglycerophosphoethanolamine (1-alkenyl-GPE), 1-acyl-GPE and 1-acylglycerophosphocholine (1-acyl-GPC) were compared in rat brain microsomes and the acyl selectivity of each system was clarified. The rate of CoA-independent transacylation of 1-[3H]alkenyl-GPE (approx. 4.5 nmol/10 min per mg protein) was about twice as high as in the case of 1-[3H]acyl-GPE and 1-[14C]acyl-GPC. On the other hand, the rates of CoA-dependent transacylation and CoA + ATP-dependent acylation (acylation of free fatty acids by acyl-CoA synthetase and acyl-CoA acyltransferase) of lysophospholipids were in the order 1-acyl-GPC greater than 1-acyl-GPE much greater than 1-alkenyl-GPE. HPLC analysis of newly synthesized molecular species revealed that the CoA-independent transacylation system exclusively esterified docosahexaenoate and arachidonate, regardless of the lysophospholipid class. The CoA-dependent transacylation and CoA + ATP-dependent acylation systems were almost the same with respect to the selectivities for unsaturated fatty acids when the same acceptor lysophospholipid was used, but some distinctive acyl selectivities were observed with different acceptor lysophospholipids. 1-Alkenyl-GPE selectively acquired only oleate in these two systems. 1-Acyl-GPE and 1-acyl-GPC showed selectivities for both arachidonate and oleate. In addition, an appreciable amount of palmitate was transferred to 1-acyl-GPC, not to 1-acyl-GPE, in CoA- or CoA + ATP-dependent manner. The acylation of exogenously added acyl-CoA revealed that the acyl selectivities of the CoA-dependent transacylation and CoA + ATP-dependent acylation systems may be mainly governed through the selective action of acyl-CoA acyltransferase. The preferential utilization of oleoyl-CoA by all acceptors and the different utilization of arachidonoyl-CoA between alkenyl and acyllysophospholipids indicated that there might be two distinct acyl-CoA:lysophospholipid acyltransferases that discriminate between oleoyl-CoA and arachidonoyl-CoA, respectively. Our present results clearly show that all three microsomal acylation systems can be active in the reacylation of three major brain glycerophospholipids and that the higher contribution of the CoA-independent system in the reacylation of ethanolamine glycerophospholipids, especially alkenylacyl-GPE, may tend to enrich docosahexaenoate in these phospholipids, as compared with in the case of diacyl-GPC.  相似文献   

4.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

5.
We have reported previously that a number of metabolites and toxins which cause Ca2+ release from mitochondria do so by increasing the permeability of the inner membrane. The metabolic basis of this permeability change is proposed to be perturbation of a phospholipid deacylation-reacylation cycle which results in an accumulation of free fatty acids and lysophospholipids (see Broekemeier, K. M., Schmid, P. C., Schmid, H. H. O., and Pfeiffer, D. R. (1985) J. Biol. Chem. 260, 105-113 and references therein). This hypothesis predicts that inhibitors of acyl-CoA:lysophospholipid acyltransferase would be among those agents which increase membrane permeability and that their effects on permeability could occur in the absence of pyridine nucleotide oxidation or of an accumulation of glutathione disulfide. The hypolipidemic drugs WY-14643 and clofibric acid inhibit the mitochondrial acyl-CoA:lysophospholipid acyltransferase and have the predicted effects on mitochondrial permeability properties. The development of increased permeability due to WY-14643 and clofibric acid requires accumulated Ca2+ specifically, is sensitive to inhibitors of phospholipase A2, and results in a pattern of solute release and swelling which is typical of other Ca2+-releasing agents. Neither agent promotes pyridine nucleotide nor sulfhydryl glutathione oxidation in the absence of Ca2+. In addition, the swelling response to hypolipidemic drugs is not significantly inhibited by dithiothreitol. In the presence of Ca2+, both agents promote an accumulation of free fatty acids. The composition of these lipid degradation products suggests that mitochondria treated with hypolipidemic drugs retain an active lysophospholipase whereas this enzyme is inactivated by Ca2+-releasing agents which alter mitochondrial sulfhydryl groups.  相似文献   

6.
Triacsins A, B, C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore this question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (greater than 80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml triacsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited greater than 90%, with 55-60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin C inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

7.
Mutagenesis followed by suicide with highly radioactive tritiated arachidonic acid has been used to select for mouse fibrosarcoma (HSDM1C1) cells defective in eicosanoid precursor uptake. Survivors of the selection were screened by replica plating and autoradiographic assay of [3H]arachidonate esterification; a mutant cell line, EPU-1, was established. EPU-1 cells contain one-third as much arachidonate as normal HSDM1C1 cells. The mutant lacks arachidonate-specific acyl-CoA synthetase, which accounts for decreased arachidonate uptake. EPU-1 exhibits enhanced turnover of arachidonoyl- but not linoleoyl-phosphatidylcholine. Bradykinin-induced arachidonate release and prostaglandin E2 synthesis are decreased in EPU-1. Thus, arachidonoyl-CoA synthetase is required for arachidonate homeostasis in HSDM1C1 cells.  相似文献   

8.
Triacsins A,B,C, and D are newly discovered compounds isolated from the culture filtrate of streptomyces which are known to inhibit nonspecific long chain acyl-CoA synthetase (EC 6.2.1.3.). These inhibitors have not been previously studied with regard to their effects on arachidonoyl-CoA synthetase, an enzyme which specifically utilizes arachidonate and other icosanoid precursor fatty acids. To explore his question, we used triacsin C, a potent inhibitor of the nonspecific acyl-CoA synthetase. Triacsin C was found to inhibit the action of arachidonoyl-CoA synthetase and the nonspecific enzyme in sonicates of HSDM1C1 mouse fibrosarcoma cells. Importantly, however, the triacsin concentration and length of pre-incubation with the enzymes could be adjusted to almost completely inhibit (>80%) the nonspecific long chain acyl CoA-synthetase, with less than 20% inhibition of arachidonoyl-CoA synthetase. Using intact cultured cells exposed to 1 ug/ml traicsin for up to 15 minutes, we unexpectedly observed preferential inhibition of arachidonoyl-CoA synthetase activity. In intact cell studies, arachidonoyl-CoA synthetase was inhibited > 90%, with 55–60% inhibition of the nonspecific acyl-CoA synthetase. As additional evidence of its inhibition of acyl-CoA synthetase enzymes in intact cells, triacsin c inhibited both fatty acid uptake into cells and icosanoid production, metabolic processes which in certain cell types appear to be dependent on acyl-CoA synthetase activity. Thus, triacsin C is a novel inhibitor which can alter the fatty metabolism of intact cells. This compound can be of significant value in determining the specific cellular functions of the two acyl-CoA synthetase enzymes.  相似文献   

9.
In this study, the initial incorporation of arachidonic acid into human neutrophils has been examined. Neutrophils pulse labeled for 5 min with [3H]arachidonic acid rapidly incorporated this fatty acid into 1,2-diacylglycerophosphocholine. However, when neutrophils were pulse labeled with [3H]arachidonic acid for 5 min, washed, and allowed to incubate for an additional 120 min, the relative amount of [3H]arachidonic acid increased in alkylacylglycerophosphocholine molecular species. Similar, when neutrophils were pulse labeled, washed, and allowed to incubate in the presence of 30 microM unlabeled arachidonic acid for 120 min, [3H]arachidonic acid was also remodeled into alkylacylglycerophosphocholine. These results implied that the initial incorporation of [3H]arachidonic acid proceeded via a free fatty acid intermediate into 1,2-diacyl-GPC, while the subsequent remodeling of arachidonate-containing glycerophospholipids did not. This initial incorporation was further investigated in a number of cell-free systems. Disrupted neutrophils incubated with [14C]arachidonoyl-CoA incorporated [14C]arachidonic acid into 1,2-diacyl-GPC containing 16:0, 18:0, and 18:1 at their sn-1 position in a pattern similar to that seen when whole neutrophils were incubated with arachidonic acid for 5 min. A small percentage of [14C]arachidonate from [14C]arachidonoyl-CoA was incorporated into 1-alkyl-2-acyl-GPC. The enzymatic activity responsible was found predominately in the membrane fraction of the broken cell preparation. This selectivity of the CoA-dependent acyltransferase for 1-acyl-linked glycerophosphocholine was further examined by adding [14C]arachidonoyl-CoA and various 1-radyl-2-lyso-GPC to neutrophil membrane preparations. These studies provide evidence that the initial incorporation of arachidonic acid into sn-glycero-3-phosphocholine takes place by an arachidonoyl-CoA: lysophosphatidylcholine acyltransferase(s) which is selective for the 1-acyl-2-lyso-GPC.  相似文献   

10.
Fractionation of human blood platelets showed that palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase activities had an identical distribution among subcellular fractions. The activity was highest with arachidonic acid as substrate in all fractions, with an enzyme activity of 50 nmol/min per mg of protein, in a 'dense-tubular-system'-enriched fraction. The ratio activities with arachidonate and palmitate as substrates was about 1.5 in all fractions. Heat inactivation did not distinguish between arachidonoyl-CoA synthetase and a palmitoyl-CoA synthetase. On the other hand, heat inactivation indicated two pools of long-chain acyl-CoA synthetases: one in a mitochondria- and one in the dense-tubular-system-enriched fraction.  相似文献   

11.
The ciliary membrane of Tetrahymena pyriformis is physically and metabolically remote from the main centers of lipid metabolism. Nevertheless, it possesses an independent capacity to modify its phospholipid molecular species composition rapidly under stress. The role of ciliary phospholipid deacylating and reacylating enzymes in this phenomenon has been evaluated. Isolated cilia showed substantial phospholipase A (combined A1 and A2), acyl-CoA synthetase and acyltransferase activities. Activities of all the three enzymes of cilia from 39 degrees C-grown cells were greatly reduced when the cilia were incubated at 15 degrees C. In contrast, the phospholipase A and acyltransferase activities in cilia from 15 degrees C-grown cells were surprisingly high at 15 degrees C and twice as high at 37 degrees C as were the equivalent activities in preparations from 39 degrees C-grown cells. While the in vivo substrate specificity of phospholipase A could not be meaningfully assessed, the acyltransferases exhibited a temperature-dependent substrate specificity in vivo. Growth temperature also affected the positional distribution of fatty acids incorporated into ciliary phospholipids in vivo. The ability of acyltransferases to utilize added [14C] acyl-CoA could be markedly stimulated, and their lipid class specificity could be significantly altered in vitro by supplementing the incubation mixture with exogenous lysophospholipid acceptors. These findings suggest that the rate-limiting factor in acyl chain turnover is not the activity of acyltransferases per se but rather the availability of suitable substrates and acceptors. Therefore, we postulate that temperature alters the rate and specificity of ciliary membrane phospholipid retailoring primarily by controlling the in situ phospholipase A activity.  相似文献   

12.
The effects of aging on lipid absorption, particularly on fatty acid glycerophospholipid and triacylglycerol esterification, were investigated in 2.5-,12- and 24-month-old mice and rats. Two intestinal mucosa microsomal enzymes, involved in the dietary fatty acid absorption, were assayed:acylCoA:2-monoacylglycerol acyltransferase and acylCoA:1-lysophosphatidylcholine acyltransferase. In both mice and rats, the activities of both enzymes varied with the nature of the acyl-CoA. Indeed acylCoa:2-monoacylglycerol acyltransferase activities were significantly higher with oleoyl-CoA and linoleoyl-CoA than with palmitoyl-CoA and arachidonoyl-CoA, while acylCoA:1-lysophosphatidylcholine acyltransferase activities were highest with arachidonoyl-CoA. AcylCoA:2-monoacylglycerol acyltransferase activity did not decrease significantly with aging in mice or rats, whatever the acyl-CoA used. In contrast, acylCoA:1-lysophosphatidylcholine acyltransferase activity in the 24-month-old rats was significantly lower (−47 %) than in 2.5-month-old rats, with oleoyl-CoA, linoleoyl-CoA and arachidonoyl-CoA. Simultaneously we observed that less glycerophospholipid esterification of oleic and linoleic acid occurs in older rats than in 2.5-month-old rats.  相似文献   

13.
Phospholipase A2 and acyltransferase activities were identified in membranes associated with purified pancreatic zymogen granules. In homogenate and granule membranes, phospholipase activity was linearly related to protein concentration and was Ca2(+)-dependent with an alkaline pH optimum. The Ca2+ sensitivity was observed over the range of concentrations through which intracellular ionic Ca2+ is elevated by physiological stimuli in intact cells. Intact zymogen granules and granule membranes also demonstrated reacylating activity in the presence and absence of an exogenous acceptor. Reacylating activity was related to the concentration of lyosphospholipid added and was optimally activated at alkaline pH. A more rapid rate of reacylation was observed when [14C]arachidonoyl CoA was employed as the donor molecule rather than [3H]arachidonate (plus coenzyme A); this suggests the absence of acyl-CoA synthetase in the purified granule membranes. We conclude that granule membrane phospholipase A2 and acyltransferases may be involved in arachidonic acid turnover in exocrine pancreas and perhaps in membrane fusion events associated with exocytosis.  相似文献   

14.
Ethanolamine glycerophospholipids of mammalian heart mitochondria have a high content of arachidonic acid. Since the presence of acyltransferases that acylate 1-radyl glycerophosphoethanolamine had not been reported in the organelle, it was not known whether this high arachidonate content could be attained by the deacylation-reacylation pathway. In this study we have detected the presence of acyl-CoA:1-acyl-glycerophosphoethanolamine acyltransferase and acyl-CoA:1-alkenyl-glycerophosphoethanolamine acyltransferase activities in the guinea pig heart mitochondria. Both acyltransferases were active with palmitoyl-, stearoyl-, oleoyl-, linoleoyl-, and arachidonoyl-CoAs, but the highest activities were obtained with arachidonoyl-CoA. The acyl-CoA specificities of the enzyme(s) did not reflect the fatty acid composition of the ethanolamine glycerophospholipids. The utilization of arachidonoyl-CoA by these acyltransferases in the guinea pig heart mitochondria suggests that these enzymes may play a significant role in contributing to the high arachidonate content of the ethanolamine glycerophospholipids. However, mechanisms beyond the acyl specificity of the reacylation reactions are also involved in the maintenance of the overall acyl composition of the ethanolamine glycerophospholipid in the cardiac mitochondria.  相似文献   

15.
The influence of both polar head and acyl chain of lysophospholipid on the activity of partially purified acyl-CoA:lysolecithin acyltransferase from rabbit lung was studied. It was concluded that the presence of methyl groups on the nitrogen of the base was essential for recognition of lysophospholipid as substrate by the enzyme. With respect to the acyl chain length and saturation, the activity followed the order: 16:0 approximately equal to 18:1 greater than 14:0 greater than greater than greater than 18:0 approximately equal to 12:0. Also, the effect on the activity of the acyl chain on acyl-CoA was studied. The activity showed great selectivity for saturated acyl-CoAs. The activity with polyunsaturated fatty acids was very low and in the case of arachidonoyl-CoA was almost negligible. The comparison between crude microsomal preparations and partially purified preparations allowed to suggest that it could exist two different acyl-CoA:lysolecithin acyltransferases differing in their selectivity towards saturated and unsaturated fatty acids.  相似文献   

16.

Background

De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT). In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid.

Methods and Results

Incubation of GPAT2-transfected CHO-K1 cells with [1-14C]arachidonate for 3 h increased incorporation of [14C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2''s role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein.

Conclusions

These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.  相似文献   

17.
An important feature in the remodelling of fatty acyl chains in cellular phospholipids is the acylation of lysophospholipids. Since lysophospholipids are cytolytic at high concentrations, the acylation reaction may provide an alternate pathway for the removal of cellular lysophospholipids. However, the physiological role of the acylation process in the maintenance of lysophospholipid levels in mammalian tissues has not been clearly defined. In this study, methyl lidocaine was found to inhibit both lysophosphatidylcholine:acyl-CoA and lysophosphatidylethanolamine:acyl-CoA acyltransferase activities in the hamster heart, but the drug had no effect on the other lysophospholipid metabolic enzymes. When the heart was perfused with 0.5 mg methyl lidocaine/mL, acyltransferase activities were attenuated, but there was no change in the activities of phospholipase A or lysophospholipase. The levels of the major lysophospholipids in the heart were not altered by methyl lidocaine perfusion. When the hearts were perfused with labelled lysophospholipid in the presence of methyl lidocaine, there was a reduction in the formation of the phospholipid and an increase in the release of the free fatty acid. However, the labelling of lysophospholipid in the heart was not altered by methyl lidocaine. We postulate that the acylation reaction has no direct contribution to the maintenance of the lysophospholipid levels in the heart.  相似文献   

18.
Arachidonic acid (AA) and its oxygenated derivatives, collectively known as the eicosanoids, are key mediators of a wide variety of physiological and pathophysiological states. AA, obtained from the diet or synthesized from linoleic acid, is rapidly incorporated into cellular phospholipids by the concerted action of arachidonoyl-CoA synthetase and lysophospholipid acyltransferases. Under the appropriate conditions, AA is liberated from its phospholipid storage sites by the action of one or various phospholipase A2 enzymes. Thus, cellular availability of AA, and hence the amount of eicosanoids produced, depends on an exquisite balance between phospholipid reacylation and hydrolysis reactions. This review focuses on the enzyme families that are involved in these reactions in resting and stimulated cells.  相似文献   

19.
Recent studies have identified a novel lysophospholipid acyltransferase (LPAT) that is associated with the Golgi complex and that is sensitive to the previously characterized acyl-CoA cholesterol acyltransferase inhibitor, 2,2-methyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976). Here we show that besides acting on exogenous lysophospholipid (LPL) substrates, the CI-976-sensitive LPAT is also capable of reacylating endogenous Golgi LPL substrates, preferentially lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Moreover, using exogenous substrates, we find that the CI-976-sensitive LPAT is capable of using a variety of fatty acyl-CoA donors ranging in chain length from 10 to 20 carbons. Additional characterization demonstrates that the CI-976-sensitive LPAT is ubiquitously expressed in rat tissues, is tightly associated with Golgi membranes, and has a pH optimum between pH 7.0 and 8.0. These studies further define a unique LPC/LPE-specific LPAT from Golgi membranes that likely has a novel function in membrane trafficking.  相似文献   

20.
Arachidonoyl-CoA synthetase was solubilized from a particulate fraction of calf brain and human platelets using 1% Nonidet P-40 and 10 mM EDTA. Arachidonoyl-CoA synthetase from both preparations was separated from nonspecific (long chain) acyl-CoA synthetase (EC 6.2.1.3) by chromatography on hydroxylapatite. To further substantiate that the two acyl-CoA synthetases are distinct proteins, we solubilized enzyme from a mutant cell line lacking arachidonoyl-CoA synthetase and from the parent cell line from which it was derived. These preparations were chromatographed on hydroxylapatite, and the mutant showed an absence of the peak identified as arachidonoyl-CoA synthetase in the parent while retaining the peak of nonspecific acyl-CoA synthetase activity. We have also determined the levels of arachidonoyl and nonspecific acyl-CoA synthetase in 13 different human cells and tissues. Arachidonoyl-CoA synthetase is widely distributed and is present in significantly lower concentrations than nonspecific acyl-CoA synthetase only in adipose tissue and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号