首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa × B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds.  相似文献   

2.
The level of transgene expression in crop × weed hybrids and the degree to which crop-specific genes are integrated into hybrid populations are important factors in assessing the potential ecological and agricultural risks of gene flow associated with genetic engineering. The average transgene zygosity and genetic structure of transgenic hybrid populations change with the progression of generations, and the green fluorescent protein (GFP) transgene is an ideal marker to quantify transgene expression in advancing populations. The homozygous T1 single-locus insert GFP/Bacillus thuringiensis (Bt) transgenic canola (Brassica napus, cv Westar) with two copies of the transgene fluoresced twice as much as hemizygous individuals with only one copy of the transgene. These data indicate that the expression of the GFP gene was additive, and fluorescence could be used to determine zygosity status. Several hybrid generations (BC1F1, BC2F1) were produced by backcrossing various GFP/Bt transgenic canola (B. napus, cv Westar) and birdseed rape (Brassica rapa) hybrid generations onto B. rapa. Intercrossed generations (BC2F2 Bulk) were generated by crossing BC2F1 individuals in the presence of a pollinating insect (Musca domestica L.). The ploidy of plants in the BC2F2 Bulk hybrid generation was identical to the weedy parental species, B. rapa. AFLP analysis was used to quantify the degree of B. napus introgression into multiple backcross hybrid generations with B. rapa. The F1 hybrid generations contained 95–97% of the B. napus-specific AFLP markers, and each successive backcross generation demonstrated a reduction of markers resulting in the 15–29% presence in the BC2F2 Bulk population. Average fluorescence of each successive hybrid generation was analyzed, and homozygous canola lines and hybrid populations that contained individuals homozygous for GFP (BC2F2 Bulk) demonstrated significantly higher fluorescence than hemizygous hybrid generations (F1, BC1F1 and BC2F1). These data demonstrate that the formation of homozygous individuals within hybrid populations increases the average level of transgene expression as generations progress. This phenomenon must be considered in the development of risk-management strategies.Communicated by J. Dvorak  相似文献   

3.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

4.
Canola (Brassica napus L.) cultivars Oscar and Westar, engineered with a Bacillus thuringiensis (Bt) cryIA(c) gene, were evaluated for resistance to lepidopterous pests, diamondback moth, Plutella xylostella L. (Plutellidae) and corn earworm, Helicoverpa zea (Boddie) (Noctuidae) in greenhouse and field conditions. In greenhouse preference assays conducted at vegetative and flowering plant stages, transgenic plants recorded very low levels of damage. A 100% diamondback moth mortality and 90% corn earworm mortality were obtained on transgenic plants in greenhouse antibiosis assays. The surviving corn earworm larvae on transgenic plants had reduced head capsule width and body weight. Mortality of diamondback moth and corn earworm were 100% and 95%, respectively, at different growth stages (seedling, vegetative, bolting, and flowering) on the transgenic plants in greenhouse tests. In field tests conducted during 1995–1997, plots were artificially infested with neonates of diamondback moth or corn earworm or left for natural infestation. Transgenic plants in all the treatments were highly resistant to diamondback moth and corn earworm larvae and had very low levels of defoliation. Plots infested with diamondback moth larvae had greater damage in both seasons as compared with corn earworm infested plots and plots under natural infestation. After exposure to defoliators, transgenic plants usually had higher final plant stand and produced more pods and seeds than non-transgenic plants. Diamondback moth injury caused the most pronounced difference in plant stand and pod and seed number between transgenic and non-transgenic plants. Our results suggest that transgenic canola could be used for effective management of diamondback moth and corn earworm on canola.  相似文献   

5.
Susceptibility to Cry1Ab toxin from Bacillus thuringiensis (Bt) was determined for 12 field populations of neonate corn earworm, Helicoverpa zea (Boddie), from the United States. Earworm larvae were exposed to artificial diet treated with increasing Bt concentrations, and mortality and growth inhibition were evaluated after 7 d. The range of variation in Bt susceptibility indicated by growth inhibition was very similar to that indicated by mortality. Although interpopulation variation in susceptibility to both proteins was observed, the magnitude of the differences was small (less than or equal to fivefold). These results suggest that the observed susceptibility differences reflect natural variation in Bt susceptibility among corn earworm populations rather than variation caused by prior exposure to selection pressures. Therefore, corn earworms apparently are susceptible to Bt toxins across most of their geographic range.  相似文献   

6.
The entomopathogenic fungus, Nomuraea rileyi, caused 90.5–100% mortality in fourth-instar larvae of the corn earworm, Helicoverpa armigera, when applied at 107 conidia/ml to corn silks, and leaves of soybean, tomato and chrysanthemum. The LT50 was 5.9–6.7 days. The fifth-instar larvae showed a mortality of 94.6% on soil with 20% water content, and 41.7% on 10% water content when the soil surface was sprayed with 108 conidia/ml suspension. Five fungicides, eight insecticides and nine herbicides, which are commonly used in corn fields, were evaluated for inhibition to conidial germination by a paper disk test. Among them, only two fungicides, viz., maneb and propineb, were highly inhibitory, while insecticides and herbicides examined were not inhibitory to the fungus. Field applications of N. rileyi conidial suspension to neonate larvae were found to be as effective as 40.46% carbofuran (EC) at 800-fold dilution in controlling corn earworm based on marketable ears. It is thus suggested that N. rileyi has potential to be a microbial control agent for this insect.  相似文献   

7.
Several studies in Europe and North America have shown that cultivated Brassica napus will readily hybridise with wild Brassica rapa but at widely different frequencies. To understand the implications of this phenomenon with regard to transgene flow, we examined the rate at which cultivated B. napus cv. Westar containing a capsid (coat protein, CP)‐coding sequence from Turnip mosaic virus (Potyvirus) hybridised under glasshouse conditions with wild B. rapa from Culham, in Oxfordshire, UK. We found that the hybridisation rate, as judged using simple sequence repeat (SSR)‐PCR and primer oligonucleotides specific for either the C or the A genomes in progeny from individual crosses varied from 5% to 100%. In hybrids (F1 progeny), transgene transfer was always observed (inferred by SSR‐PCR) when hybrids were detected. Our observations revealed a hitherto unrecorded source of variability in transgene flow to wild UK B. rapa.  相似文献   

8.
The green fluorescent protein (GFP) holds promise as a field-level transgene marker. One obstacle to the use of GFP is fluorescence variability observed within leaf canopies. In growth chamber and field experiments, GFP fluorescence in transgenic oilseed rape (Brassica napus) was shown to be variable at each leaf position over time and among different leaves on the same plant. A leaf had its highest GFP fluorescence after emergence and, subsequently, its fluorescence intensity decreased. GFP fluorescence intensity was directly correlated with the concentration of soluble protein. The concentration of the genetically linked recombinant Bacillus thuringiensis (Bt) cry1Ac endotoxin protein also was examined, and GFP fluorescence was positively correlated with Bt throughout development. The results show that GFP can be used as an accurate transgene marker but that aspects of plant developmental should be taken into account when interpreting fluorescence measurements.Communicated by M.C. Jordan  相似文献   

9.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), and corn earworm, Helicoverpa zea (Boddie), perennially cause leaf and ear damage to corn, Zea mays L., in the southeastern United States. Transgenic Bacillus thuringiensis (Bt) hybrids with the Bt11, MON810, or 176 events expressing the Cry1Ab insecticidal endotoxin from were evaluated for control fall armyworm and corn earworm at seven locations in Georgia during 1999 and 2000. Corn was planted at the recommended time for each location and 1 and 2 mo later in the southern locations. All Bt events consistently reduced whorl infestation and damage, although event 176 did not prevent whorl damage in the later plantings in the southern locations in both years. All events also reduced seedling damage by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in one trial and stalk infestations and tunnel length by southwestern corn borers, Diatraea grandiosella Dyar, in another trial. Hybrids containing Bt11 and MON810 events reduced ear infestations in all trials, although reductions were small in later plantings. Nevertheless, both events reduced grain damage from earworms and armyworms by an average +/- SE of 52.5 +/- 5.1% in all trials. The hybrid containing event 176 did not reduce ear infestations and damage. Total grain aflatoxin concentrations were not significantly affected by Bt resistance in any trial (N = 17). Yield responses were variable with the prevention of yield loss being proportional to the severity of insect damage. Although plantings made after the recommended time did not consistently benefit from Bt resistance, Bt11 and MON810 events were effective in reducing damage to field corn when large infestations occurred. The Bt11 and MON810 events mitigated the risk of severe lepidopteran damage to corn, thereby making later plantings of corn feasible in double-cropping systems.  相似文献   

10.
Laboratory bioassays were conducted to evaluate the response of first instar larvae of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae), a non‐target species, to pollen from corn, Zea mays L. (Commelinales: Poaceae), from two new corn hybrids genetically modified to express different types of insecticidal proteins derived from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). One hybrid expresses both Cry1Ab and Cry2Ab2 proteins (MON 810 × MON 84006), active against lepidopteran pests, and the other expresses Cry3Bb1 protein (MON 863), targeted against coleopteran pests. First instar larvae were placed on milkweed leaves (Asclepias syriaca L.) (Gentianales: Asclepiadaceae) dusted with doses of either Bt pollen or its nonexpressing (isoline) pollen counterpart ranging from 50 to 3200 grains cm?2 of milkweed leaves, or no pollen at all. Larvae were exposed to pollen for 4 days, then moved to pollen‐free leaves and observed for another 6 days. Survival was observed after 2, 4, and 10 days. Weight gain was estimated after 4 and 10 days, leaf consumption after 2 and 4 days, and larval development after 10 days. Exposure to pollen of the Cry1Ab/Cry2Ab2‐Bt expressing hybrid reduced larval survival approximately 7.5–23.5% at the dose ranges tested relative to a no pollen control. Larval weight gain and consumption were reduced for larvae exposed to pollen of this hybrid and a small minority of larvae (3.1%) never developed past the third instar after 10 days of observation. Exposure to pollen of the Cry3Bb1‐Bt expressing hybrid had no negative effects on larval mortality, weight gain, consumption, or development relative to the consumption of Bt‐free corn pollen. The relevance of these findings to the risk that these Bt corn hybrids pose to monarch populations is discussed.  相似文献   

11.
Rapeseed Brassica napus L. transgenic for a Bacillus thuringiensis ( Bt ) transgene was developed and was shown to be insecticidal towards certain caterpillars including the diamondback moth Plutella xylostella L. and the corn earworm Helicoverpa zea Boddie. To simulate an escape of the transgenics from cultivation, a field experiment was performed in which transgenic and nontransgenic rapeseed plants were planted in natural vegetation and cultivated plots and subjected to various selection pressures in the form of herbivory from insects. Only two plants, both transgenic, survived the winter to reproduce in the natural-vegetation plots which were dominated by grasses such as crabgrass. However, in plots that were initially cultivated then allowed to naturalize, medium to high levels of defoliation decreased survivorship of nontransgenic plants relative to Bt -transgenic plants and increased differential reproduction in favour of Bt plants. Thus, where suitable habitat is readily available, there is a likelihood of enhanced ecological risk associated with the release of certain transgene/crop combinations such as insecticidal rapeseed. This is the first report of a field study demonstrating the effect of a fitness-increasing transgene in plants.  相似文献   

12.
The corn earworm,Helicoverpa zea (Boddie), is a perennial economic pest of field crops in the United States. Maize,Zea mays L., is the major host crop promoting the build-up of devastating corn earworm populations that limit full production of cotton, soybean, peanut, and grain sorghum. Resistance to the corn earworm in maize and in particular sweet maize, would provide an environmentally safe, economical method of control for this pest insect. Antibiotic effects of corn silks on this insect are: small larvae, extended developmental period, and reduced fecundity. Silks from individual maize plants of resistant and susceptible lines and progeny in six generations consisting of parents (P1, P2), F1, F2, and backcrosses BC1.1 (F1 × P1) and BC1.2 (F1 × P2) from each of four crosses were used to determine the genetic basis of the antibiotic resistance of silks to the corn earworm. In the cross of Zapalote Chico × PI340856, genes controlling resistance in the silks to the corn earworm larvae are dominant in PI340856 to those in Zapalote Chico. The cross of Zapalote Chico × GT114 involves parents differing in degree of resistance, and possibly differing for the genetic mechanism by which the resistance is inherited. The inheritance of resistance may involve non-additive (dominance and epistasis) genetic variance. A digenic 6-parameter model indicated (1) the resistance in this cross is controlled by more than one pair of genes and (2) some or all of the genes interact to cause non-allelic interaction. Thus, the resistance in this cross may be controlled by both dominant and recessive genes. The resistance of Zapalote Chico × CI64, an intermediate inbred, is influenced by additive gene effects. The digenic model adequately predicts all generation means of the cross of GT3 × PI340856 except for the F1. Thus, it appears that the additive-dominance model is not satisfactory for this cross involving susceptible and resistant parents. Generation mean analysis indicates that resistance to silk-feeding by corn earworm larvae is under genetic control, but gene action differs from one type of cross to another.  相似文献   

13.
Per os inoculations of 4- to 6-day-old larvae of the corn earworm, Heliothis zea, with suspensions containing 106 spores of Nosema acridophagus or 104, 105, and 106 spores of Nosema cuneatum retarded the growth and development of the larvae. Migratory grasshoppers, Melanoplus sanguinipes, inoculated with N. acridophagus produced fewer spores than similarly inoculated corn earworms, but spore production was similar in these insects when they were inoculated with N. cuneatum. Standard bioassay procedures showed that spores of both microsporidians were some-what more virulent when they were produced in corn earworms than when they were produced in grasshoppers. Spores of these microsporidians might be produced more efficiently in corn earworm larvae than in grasshoppers.  相似文献   

14.
 A modified gene of Bacillus thuringiensis var. Tolworthi (Bt), encoding a coleopteran insect-specific CryIIIB toxin, was transferred via Agrobacterium tumefaciens to the female parent of the eggplant commercial F1 hybrid ‘Rimina’. One-hundred and fifty eight transgenic plants were regenerated and tested by PCR and NPTII expression assays. The presence of the CryIIIB toxin in leaf extracts was demonstrated in 57 out of 93 transgenic plants tested by DAS-ELISA assay. High Bt-expressing plants contained a 74-kDa protein cross-reacting with serum anti-CryIIIB toxin. Twenty three out of 44 S. melongena plants tested by insect bioassay showed significant insecticidial activity on neonate larvae of Colorado Potato Beetle (CPB). The Bt transgene and the toxic effect on CPB larvae were transmitted to progenies derived by selfing. Thus, transgenic Bt eggplants represent a very effective means of CPB pest control. Received: 25 November 1996/Accepted: 31 January 1997  相似文献   

15.
Summary A recombinant AcMNPV containing the green fluorescent protein (gfp) gene under the polyhedrin promoter (polh) was used to investigate the expression of the gfp gene as well as the production of recombinant extracellular virus in 14 continuous insect cell lines, including Heliothis virescens (BCIRL-HV-AM1), Helicoverpa zea (BCIRL-HZ-AM1), Anticarsia gemmatalis (BCIRL-AG-AM1), Trichoplusia ni (TN-CL1), Spodoptera frugiperda (IPLB-SF21), Spodoptera exigua (BCIRL/AMCY-Se-E1 and BCIRL/AMCY-Se-E5), Bombyx mori (BMN), Sf9 (a clone of IPLB-SF21), and five cell line clones of BCIRL-HV-AM1. The susceptibility of the cell lines to the recombinant virus (AcMNPV.GFP) was ascertained by calculating the mean percentage number of green light-emitting cells as well as by TCID50 titration of extracellular virus with fluorescence as a sign of infection. Of the 14 cell lines tested, all were permissive with varying degrees to Ac-MNPV.GFP, except BCIRL-HV-AMCL2 and BCIRL-HZ-AM1, both grown in serum-containing medium, and BMN, grown in serum-free medium, which were nonpermissive to the virus. Except for BCIRL/AMCY-Se-E1, IPLB-SF21, and four of the five BCIRL-HV-AM1 clones, all the other cell lines (BCIRL-HV-AM1, BCIRL-AG-AM1, TN-CL1, Se-E5, and Sf9) expressed detectable levels of GFP by 48 h postinoculation. The BCIRL/AMCY-Se-E1 and IPLB-SF21 cells, grown in serum-free medium (Ex-Cell 401), expressed detectable levels of GFP at 72 h postinoculation. By contrast, in BCIRL/AMCY-Se-E1 in serum-containing medium (Ex-Cell 401+10% FBS [fetal bovine serum]), GFP was detected at 48 h postinoculation. Furthermore, TN-CL1 cells produced the largest mean percentage number of fluorescent (76.6%) cells in both serum-containing and serum-free medium (64.8%) at 120 h postinoculation. All the BCIRL-HV-AM1 clones showed no GFP expression until 96 h postinoculation, and only then about 1% of the cell population fluoresced. The mean extracellular virus (ECV) production at 120 h postinoculation was highest in BCIRL/AMCY-Se-E5 cells grown in Ex-Cell 401+10% FBS (37.8×106 TCID50/ml) followed by BCIRL-HV-AM1 in TC199-MK (33.4×106 TCID50/ml). Only the BCIRL-HV-AMCL3 clone produced any substantial level of ECV at 120 h postinoculation (16.9×106 TCID50/ml). However, there was no significant correlation between ECV production and the mean percentage number of fluorescent cells. This study provides further information on the susceptibility of 14 insect cell lines to a recombinant AcMNPV containing the green fluorescent protein gene. This information might avail researchers with information to facilitate decisions as to what other cell lines are available for in vitro studies of the gfp gene.  相似文献   

16.
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pest management tactics, including the cultural practice of annual crop rotation. Since first reported in Illinois in the late 1980s, populations of the rotation‐resistant western corn rootworm have spread over a wide area of the eastern Corn Belt. Currently, little information is available concerning the interaction of rotation resistance with the use of genetically modified corn expressing insecticidal toxins from Bacillus thuringiensis Berliner (Bt), a popular tactic for preventing larval injury and its associated yield loss. The goal of this greenhouse experiment was to determine whether rotation‐resistant and rotation‐susceptible western corn rootworm larvae differ with respect to survival or development when exposed to single‐ or dual‐toxin (pyramided) Bt corn. Individual corn plants were infested with 225 near‐hatch eggs at the V5 (five leaf collar) growth stage. Larvae developed undisturbed on the root systems for 17 days, after which they were recovered using Berlese–Tullgren funnels. Surviving larvae were counted to estimate mortality, and head capsule widths were measured to assess development. Rotation‐resistant and rotation‐susceptible larvae had statistically similar mean levels of mortality and head capsule widths when exposed to both single‐toxin (Cry3Bb1 or Cry34/35Ab1) and pyramided (Cry3Bb1+ Cry34/35Ab1) Bt corn, suggesting that these two populations do not differ with respect to survival or development when exposed to Bt corn. Additionally, the statistically similar mean levels of mortality for larvae exposed to single‐toxin and pyramided Bt corn suggest that pyramided Bt hybrids containing the Cry3Bb1 and Cry34/35Ab1 toxins do not result in additive mortality for western corn rootworm larvae. Implications for management of this economically important pest are discussed.  相似文献   

17.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

18.
The impact of applying edible oils to corn silks on ear-feeding insects in sweet corn, Zea mays L., production was evaluated in 2006 and 2007. Six edible oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix neem oil and nC21 Sunspray Ultrafine, a horticultural mineral oil) were used as the controls for the experiment. Six parameters evaluated in this experiment were corn earworm [Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)] damage rating, the number of sap beetle [Carpophilus spp. (Coleoptera: Nitidulidae)] adults and larvae, the number of corn silk fly (or picture-winged fly) (Diptera: Ulidiidae) larvae, common smut [Ustilago maydis (D.C.) Corda] infection rate, and corn husk coverage. Among the two control treatments, neem oil reduced corn earworm damage at both pre- and postpollination applications in 2006, but not in 2007, whereas the mineral oil applied at postpollination treatments reduced corn earworm damage in both years. The mineral oil also reduced the number of sap beetle adults, whereas the neem oil applied at postpollination attracted the most sap beetle adults in 2007. Among the six edible oil treatments, the corn and sesame oils applied at postpollination reduced corn earworm damage only in 2007. The application of the peanut oil at postpollination attracted more sap beetle adults in 2006, and more sap beetle larvae in 2007. Olive and neem oils significantly reduced husk coverage compared with the water control in both years. The mineral oil application consistently increased smut infection rate in both 2006 and 2007. Ramifications of using oil treatments in ear pest management also are discussed.  相似文献   

19.
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most significant pest of field maize, Zea mays L. (Poaceae), in the USA. Maize plants expressing Bt toxins targeting the corn rootworm complex have been widely adopted and are the primary insecticidal control measure for this pest in North America. Insect resistance management tactics using various refuge structures have been adopted to ensure Bt products will retain durability. An assumption of the refuge strategy is that males and females emerging from Bt and refuge plantings mate randomly; this has not been tested in the field. We conducted cage studies using field populations of WCR in Indiana, USA, to generate empirical field data on mating rates between beetles emerging from Cry3Bb1‐expressing Bt and refuge maize plants. Two refuge configurations were tested; all refuge plants were labeled using the stable isotope 15N. This mark persists in adult beetles after eclosion, allowing for collection and analysis of isotopic ratios of all beetles. Additional data collected included adult emergence rates, timing and sex ratios for each of the treatments, and head capsule size and dry weights of beetles collected. Treatment had a significant effect on dry weight; mean dry weight decreased in Bt‐only treatments. Fisher's exact test of proportions of mating pairs of refuge and Bt insects indicated that mating was not random in 20% strip refuges and 5% seed blend treatments. We found high percentages of beetles that fed on Bt‐expressing plants as larvae, suggesting that mating between resistant beetles may not be rare even if random mating did occur.  相似文献   

20.
Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) can control some major insect pests and reduce reliance on sprayed insecticides. However, large scale adoption of this technology has raised concerns about potential negative effects, including evolution of pest resistance to Bt toxins, transgene flow from Bt crops to other plants, and harm to non-target beneficial organisms. Furthermore, concern has also been expressed over the effects this technology may have on biodiversity in general. Ecologically relevant risk assessment is therefore required (Risk = Hazard × Exposure). Transgenic plants that produce Bt toxins to kill insect pests could harm beneficial predators. This might occur directly by transmission of toxin via prey, or indirectly by toxin-induced reduction in prey quality (Hazard). To test these hypotheses, we determined the effects of Bt-producing canola on a predatory ground beetle (Pterostichus madidus) fed larvae of diamondback moth (Plutella xylostella) that were either susceptible or resistant to the Bt toxin. Survival, weight gain, and adult reproductive fitness did not differ between beetles fed prey reared on Bt-producing plants and those fed prey from control plants. Furthermore, while Bt-resistant prey was shown to deliver high levels of toxin to the beetle when they were consumed, no significant impact upon the beetle was observed. Subsequent investigation showed that in choice tests (Exposure), starved and partially satiated female beetles avoided Bt-fed susceptible prey, but not Bt-fed resistant prey. However, in the rare cases when starved females initially selected Bt-fed susceptible prey, they rapidly rejected them after beginning to feed. This prey type was shown to provide sufficient nutrition to support reproduction in the bioassay suggesting that Bt-fed susceptible prey is acceptable in the absence of alternative prey, however adults possess a discrimination ability based on prey quality. These results suggest that the direct effects of Bt-producing canola on predator life history was minimal, and that predators’ behavioural preferences may mitigate negative indirect effects of reduced quality of prey caused by consumption of Bt-producing plants. The results presented here therefore suggest that cultivation of Bt canola may lead to conservation of non-target predatory and scavenging organisms beneficial in pest control, such as carabids, and may therefore provide more sustainable agricultural systems than current practices. In addition, minimal impacts on beneficial carabids in agro-ecosystems suggest that Bt canola crops are likely to be compatible with integrated pest management (IPM) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号