首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Collapsin response mediator proteins (CRMPs)/TOAD64/Ulips/DRPs and CRAM have emerged as strong candidates for a role in semaphorin signaling. In this study we identified Fes/Fps (Fes) tyrosine kinase in the CRMP-CRAM complex and investigated whether Fes was involved in semaphorin3A (Sema3A) signaling. In COS-7 cells, the interaction between Fes and plexinA1 (PlexA1) and the tyrosine phosphorylation of PlexA1 by Fes were observed; however, these events were significantly attenuated by co-expression of neuropilin-1 (NP-1). Even with NP-1 co-expression, Sema3A was able to enhance the association of Fes with PlexA1 and Fes-mediated tyrosine phosphorylation of PlexA1, CRAM and CRMP2. Co-expression of Fes with PlexA1 exhibited COS-7 cell contraction activity, indicating that Fes can convert inactive PlexA1 to its active form, whereas combination of Fes/NP-1/PlexA1 or Fes kinase-negative mutants/PlexA1 did not alter cell morphology. Finally, Sema3A-induced growth cone collapse of dorsal root ganglion neurons was suppressed by expression of Fes kinase-negative mutants. Taken together, our findings suggest that Fes links Sema3A signals to CRMP-CRAM, and that NP-1 negatively regulates PlexA1 activation by Fes in resting condition.  相似文献   

2.
Previously, we proposed the following mechanism for konjac ceramide (kCer)-mediated neurite outgrowth inhibition: kCer binds to Nrp as a Sema3A agonist, resulting in Nrp1/PlexA complex formation and activation of the Sema3A signaling pathway to induce phosphorylation of CRMP2 and microtubule depolymerization. The Sema3A/Nrp1 signaling pathway is known to be also expressed in normal human keratinocytes. To determine whether kCer can function in human keratinocytes as it does in neurites, that is, if it can bind to Nrp1 in place of Sema3A, we studied the effect of kCer on HaCaT cell migration activity. Using a trans-well chamber assay, we compared the effects of Sema3A and kCer on serum-derived cell migration activity. kCer showed Sema3A-like suppression of cell migration activity and induction of cellular Cofilin phosphorylation. In addition, kCer and Sema3A inhibited histamine (His)-enhanced migration of immature HaCaT cells. We have demonstrated that kCer does not interact with histaime receptors H1R or H4R directly, but we speculate that kCer may transduce a signal downstream of the His signaling pathway.  相似文献   

3.
Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3a loxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.  相似文献   

4.
The Plexin family of transmembrane proteins appears to function as repulsive receptors for most if not all Semaphorins. Here, we use genetic and biochemical analysis in Drosophila to show that the transmembrane protein Off-track (OTK) associates with Plexin A, the receptor for Sema 1a, and that OTK is a component of the repulsive signaling response to Semaphorin ligands. In vitro, OTK associates with Plexins. In vivo, mutations in the otk gene lead to phenotypes resembling those of loss-of-function mutations of either Sema1a or PlexA. The otk gene displays strong genetic interactions with Sema1a and PlexA, suggesting that OTK and Plexin A function downstream of Sema 1a.  相似文献   

5.
Collapsin response mediator proteins (CRMPs) are a family of cytosolic phosphoproteins that consist of 5 members (CRMP 1–5). CRMP2 and CRMP4 regulate neurite outgrowth by binding to tubulin heterodimers, resulting in the assembly of microtubules. CRMP2 also mediates the growth cone collapse response to the repulsive guidance molecule semaphorin‐3A (Sema3A). However, the role of CRMP4 in Sema3A signaling and its function in the developing mouse brain remain unclear. We generated CRMP4?/? mice in order to study the in vivo function of CRMP4 and identified a phenotype of proximal bifurcation of apical dendrites in the CA1 pyramidal neurons of CRMP4?/? mice. We also observed increased dendritic branching in cultured CRMP4?/? hippocampal neurons as well as in cultured cortical neurons treated with CRMP4 shRNA. Sema3A induces extension and branching of the dendrites of hippocampal neurons; however, these inductions were compromised in the CRMP4?/? hippocampal neurons. These results suggest that CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus and that this is partly dependent on Sema3A signaling. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

6.
Regulation of axon growth is a critical event in neuronal development. Nerve growth factor (NGF) is a strong inducer of axon growth and survival in the dorsal root ganglia (DRG). Paradoxically, high concentrations of NGF are present in the target region where axon growth must slow down for axons to accurately identify their correct targets. Semaphorin3A (Sema3A), a powerful axonal repellent molecule for DRG neurons, is also situated in their target regions. NGF is a modulator of Sema3A-induced repulsion and death. We show that Sema3A is a regulator of NGF-induced neurite outgrowth via the TrkA receptor, independent of its growth cone repulsion activity. First, neurite outgrowth of DRG neurons is more sensitive to Sema3A than repulsion. Second, at concentrations sufficient to significantly inhibit Sema3A-induced repulsion, NGF has no effect on Sema3A-induced axon growth inhibition. Third, Sema3A-induced outgrowth inhibition, but not repulsion activity, is dependent on NGF stimulation. Fourth, Sema3A attenuates TrkA-mediated growth signaling, but not survival signaling, and over-expression of constitutively active TrkA blocks Sema3A-induced axon growth inhibition, suggesting that Sema3A activity is mediated via regulation of NGF/TrkA-induced growth. Finally, quantitative analysis of axon growth in vivo supports the possibility that Sema3A affects axon growth, in addition to its well-documented role in axon guidance. We suggest a model whereby NGF at high concentrations in the target region is important for survival, attraction and inhibition of Sema3A-induced repulsion, while Sema3A inhibits its growth-promoting activity. The combined and cross-modulatory effects of these two signaling molecules ensure the accuracy of the final stages in axon targeting.  相似文献   

7.
Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1. A specific NRP1 inhibitory peptide ameliorated Sema3A-evoked cortical axonal retraction and neuronal death. Moreover, Sema3A was also involved in cerebral ischemia-induced neuronal death. Expression levels of Sema3A and NRP1, but not NRP2, were significantly increased early during brain reperfusion following transient focal cerebral ischemia. NRP1 inhibitory peptide delivered to the ischemic brain was potently neuroprotective and prevented the loss of motor functions in mice. The integrity of the injected NRP1 inhibitory peptide into the brain remained unchanged, and the intact peptide permeated the ischemic hemisphere of the brain as determined using MALDI-MS-based imaging. Mechanistically, NRP1-mediated axonal collapse and neuronal death is through direct and selective interaction with the cytoplasmic tyrosine kinase Fer. Fer RNA interference effectively attenuated Sema3A-induced neurite retraction and neuronal death in cortical neurons. More importantly, down-regulation of Fer expression using Fer-specific RNA interference attenuated cerebral ischemia-induced brain damage. Together, these studies revealed a previously unknown function of NRP1 in signaling Sema3A-evoked neuronal death through Fer in cortical neurons.  相似文献   

8.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

9.
The semaphorin-signaling transducer collapsin response mediator protein 2 (CRMP2) has been identified in the nervous system where it mediates Sema3A-induced growth cone navigation. In the present study, we provide first evidence that CRMP2 is present in the immune system and plays a critical role in T lymphocyte function. CRMP2 redistribution at the uropod in polarized T cells, a structural support of lymphocyte motility, suggests that it may regulate T cell migration. This was evidenced in primary T cells by small-interfering RNA-mediated CRMP2 gene silencing and blocking Ab, as well as CRMP2 overexpression in Jurkat T cells tested in a chemokine- and semaphorin-mediated transmigration assay. Expression analysis in PBMC from healthy donors showed that CRMP2 is enhanced in cell subsets bearing the activation markers CD69+ and HLA-DR+. Heightened expression in T lymphocytes of patients suffering from neuroinflammatory disease with enhanced T cell-transmigrating activity points to a role for CRMP2 in pathogenesis. The elucidation of the signals and mechanisms that control this pathway will lead to a better understanding of T cell trafficking in physiological and pathological situations.  相似文献   

10.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

11.
Collapsin response mediator proteins are ubiquitously expressed from multiple genes (CRMPs 1-5) and play important roles in dividing cells and during semaphorin 3A (Sema3A) signaling. Nonetheless, their mode of action remains opaque. Here we carried out in vivo and in vitro assays that demonstrate that CRMPs are a new class of microtubule-associated protein (MAP). In experiments with CRMP1 or CRMP2 and their derivatives, only the C-terminal region (residues 490-572) mediated microtubule binding. The in vivo microtubule association of CRMPs was abolished by taxol or epothilone B, which is highly unusual. CRMP2-depleted cells exhibited destabilized anaphase astral microtubules and altered spindle position. In a cell-based assay, all CRMPs stabilized interphase microtubules against nocodazole-mediated depolymerization, with CRMP1 being the most potent. Remarkably, a 82-residue C-terminal region of CRMP1 or CRMP2, unrelated to other microtubule binding motifs, is sufficient to stabilize microtubules. In cells, we demonstrate that glycogen synthase kinase-3β (GSK3β) inhibition potentiates this activity. Thus, CRMPs are a new class of MAP that binds through a unique motif, but in common with others such as Tau, is antagonized by GSK3β. This regulation is consistent with such kinases being critical for the Sema3A (collapsin) pathway. These findings have implications for cancer and neurodegeneration.  相似文献   

12.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and 3 different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while over-expression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.  相似文献   

13.
Semaphorin III/collapsin-1 (Sema3A) guides a specific subset of neuronal growth cones as a repulsive molecule. In this study, we have investigated a possible role of non-neuronal Sema3A in lung morphogenesis. Expression of mRNAs of Sema3A and neuropilin-1 (NP-1), a Sema3A receptor, was detected in fetal and adult lungs. Sema3A-immunoreactive cells were found in airway and alveolar epithelial cells of the fetal and adult lungs. Immunoreactivity for NP-1 was seen in fetal and adult alveolar epithelial cells as well as endothelial cells. Immunoreactivity of collapsin response mediator protein CRMP (CRMP-2), an intracellular protein mediating Sema3A signaling, was localized in alveolar epithelial cells, nerve tissue and airway neuroendocrine cells. The expression of CRMP-2 increased during the fetal, neonate and adult periods, and this pattern paralleled that of NP-1. In a two-day culture of lung explants from fetal mouse lung (E11.5), with exogenous Sema3A at a dose comparable to that which induces growth cone collapse of dorsal root ganglia neurons, the number of terminal buds was reduced in a dose-dependent manner when compared with control or untreated lung explants. This decrease was not accompanied with any alteration of the bromodeoxyuridine-positive DNA-synthesizing fraction. A soluble NP-1 lacking the transmembrane and intracellular region, neutralized the inhibitory effect of Sema3A. The fetal lung explants from neuropilin-1 homozygous null mice grew normally in vitro regardless of Sema3A treatment. These results provide evidence that Sema3A inhibits branching morphogenesis in lung bud organ cultures via NP-1 as a receptor or a component of a possible multimeric Sema3A receptor complex.  相似文献   

14.
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.  相似文献   

15.
The members of the collapsin response mediator protein (CRMP) family—five cytosolic phosphoproteins—are highly expressed throughout brain development. The first member to be cloned, CRMP2, was identified as an intracellular messenger required for the growth cone-collapse induced by semaphorin 3A (Sema3A). A rapidly expanding body of study indicates that the functions of CRMPs are not solely limited to the signaling transduction of the Sema3A guidance cue. They are probably involved in multiple cellular and molecular events involved in apoptosis/proliferation, cell migration, and differentiation. In the adult brain, the expression of CRMPs is dramatically downregulated. However, they remain expressed in structures that retain their capacity for differentiation and plasticity and also in a subpopulation of oligodendrocytes (CRMP2 and CRMP5). Moreover, the expression of CRMPs is altered in neurodegenerative diseases, and these proteins may be of key importance in the physiopathology of the adult nervous system.  相似文献   

16.
The members of the collapsin response mediator protein (CRMP) family-five cytosolic phosphoproteins -are highly expressed throughout brain development. The first member to be cloned, CRMP2, was identified as an intracellular messenger required for the growth cone-collapse induced by semaphorin 3A (Sema3A). A rapidly expanding body of study indicates that the functions of CRMPs are not solely limited to the signaling transduction of the Sema3A guidance cue. They are probably involved in multiple cellular and molecular events involved in apoptosis/proliferation, cell migration, and differentiation. In the adult brain, the expression of CRMPs is dramatically downregulated. However, they remain expressed in structures that retain their capacity for differentiation and plasticity and also in a subpopulation of oligodendrocytes (CRMP2 and CRMP5). Moreover, the expression of CRMPs is altered in neurodegenerative diseases, and these proteins may be of key importance in the physiopathology of the adult nervous system.  相似文献   

17.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and three different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while overexpression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.Key words: semaphorin, neuropilin, glioma, cell migration, signalling, cancer  相似文献   

18.
Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in mature neurons, but its potential role in axonal guidance remains elusive. Here we show that Syb2 is required for Sema3A-dependent repulsion but not Sema3C-dependent attraction in cultured neurons and in the mouse brain. Syb2 associated with Neuropilin 1 and Plexin A1, two essential components of the Sema3A receptor, via its juxtatransmembrane domain. Sema3A receptor and Syb2 colocalize in endosomal membranes. Moreover, upon Sema3A treatment, Syb2-deficient neurons failed to collapse and transport Plexin A1 to cell bodies. Reconstitution of Sema3A receptor in nonneuronal cells revealed that Sema3A further inhibited the exocytosis of Syb2. Therefore, Sema3A-mediated signaling and axonal repulsion require Syb2-dependent vesicular traffic.  相似文献   

19.
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.  相似文献   

20.

Background  

Fps/Fes and Fer are the only two members of a distinct subclass of cytoplasmic protein tyrosine kinases. Fps/Fes was previously implicated in Semaphorin 3A (Sema3A)-induced growth cone collapse signaling in neurons from the dorsal root ganglion (DRG) through interaction with and phosphorylation of the Sema3A receptor component PlexinA1, and members of the collapsin response mediator protein (CRMP) family of microtubule regulators. However, the potential role of the closely related Fer kinase has not been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号