首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable and robust oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca2+ oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high.  相似文献   

2.
3.
A network of interacting proteins has been found that can account for the spontaneous oscillations in adenylyl cyclase activity that are observed in homogenous populations of Dictyostelium cells 4 h after the initiation of development. Previous biochemical assays have shown that when extracellular adenosine 3′,5′-cyclic monophosphate (cAMP) binds to the surface receptor CAR1, adenylyl cyclase and the MAP kinase ERK2 are transiently activated. A rise in the internal concentration of cAMP activates protein kinase A such that it inhibits ERK2 and leads to a loss-of-ligand binding by CAR1. ERK2 phosphorylates the cAMP phosphodiesterase REG A that reduces the internal concentration of cAMP. A secreted phosphodiesterase reduces external cAMP concentrations between pulses. Numerical solutions to a series of nonlinear differential equations describing these activities faithfully account for the observed periodic changes in cAMP. The activity of each of the components is necessary for the network to generate oscillatory behavior; however, the model is robust in that 25-fold changes in the kinetic constants linking the activities have only minor effects on the predicted frequency. Moreover, constant high levels of external cAMP lead to attenuation, whereas a brief pulse of cAMP can advance or delay the phase such that interacting cells become entrained.  相似文献   

4.
5.
6.
The dynamic behavior of a model of two electrically coupled oscillatory neurons was studied while the external polarizing current was varied. It was found that the system with weak coupling can demonstrate one of five stable oscillatory modes: (1) in-phase oscillations with zero phase shift; (2) antiphase oscillations with halfperiod phase shift; (3) oscillations with any fixed phase shift depending on the value of the external polarizing current; (4) both in-phase and antiphase oscillations for the same current value, where the oscillation type depends on the initial conditions; (5) both in-phase and quasiperiodic oscillations for the same current value. All of these modes were robust, and they persisted despite small variations of the oscillator parameters. We assume that similar regimes, for example antiphase oscillations, can be detected in neurophysiological experiments. Possible applications to central pattern generator models are discussed.  相似文献   

7.
Recent advances in imaging technology have revealed oscillations of cyclic adenosine monophosphate (cAMP) in insulin-secreting cells. These oscillations may be in phase with cytosolic calcium oscillations or out of phase. cAMP oscillations have previously been modeled as driven by oscillations in calcium, based on the known dependence of the enzymes that generate cAMP (adenylyl cyclase) and degrade it (phosphodiesterase). However, cAMP oscillations have also been reported to occur in the absence of calcium oscillations. Motivated by similarities between the properties of cAMP and metabolic oscillations in pancreatic β cells, we propose here that in addition to direct control by calcium, cAMP is controlled by metabolism. Specifically, we hypothesize that AMP inhibits adenylyl cyclase. We incorporate this hypothesis into the dual oscillator model for β cells, in which metabolic (glycolytic) oscillations cooperate with modulation of ion channels and metabolism by calcium. We show that the combination of oscillations in AMP and calcium in the dual oscillator model can account for the diverse oscillatory patterns that have been observed, as well as for experimental perturbations of those patterns. Predictions to further test the model are provided.  相似文献   

8.
Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space.  相似文献   

9.
How to design a robust gene network to tolerate more intrinsic kinetic parameter variations and to attenuate more extrinsic environmental noises to achieve a desired filtering level will be an important topic for systems biology and synthetic biology. At present, there is no good systematic design method to achieve robust gene network design. In this study, a gene network suffering from intrinsic kinetic parameter fluctuations and extrinsic environmental noises is modeled as a Langevin equation with state-dependent stochastic noises. Based on the nonlinear stochastic filtering theory, a systematic gene circuit design method is proposed to make gene networks improve their robustness to tolerate more intrinsic noises and to attenuate extrinsic noises to a prescribed filtering level. The robust gene network design principles have not only yielded a comprehensive design theory of robust gene networks, but also gained valuable insights into the molecular noise filtering of gene networks from the systematic perspective.  相似文献   

10.
A major challenge in ecology is to explain why so many species show oscillatory population dynamics and why the oscillations commonly occur with particular periods. The background environment, through noise or seasonality, is one possible driver of these oscillations, as are the components of the trophic web with which the species interacts. However, the oscillation may also be intrinsic, generated by density-dependent effects on the life history. Models of structured single-species systems indicate that a much broader range of oscillatory behavior than that seen in nature is theoretically possible. We test the hypothesis that it is selection that acts to constrain the range of periods. We analyze a nonlinear single-species matrix model with density dependence affecting reproduction and with trade-offs between reproduction and survival. We show that the evolutionarily stable state is oscillatory and has a period roughly twice the time to maturation, in line with observed patterns of periodicity. The robustness of this result to variations in trade-off function and density dependence is tested.  相似文献   

11.
12.
In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explicitly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.  相似文献   

13.
The cAMP receptor on the surface of aggregation competent Dictyostelium discoideum cells specifically binds [3H]cAMP in an oscillatory manner with a periodicity of 2 min. The oscillatory cAMP-binding component is developmentallly regulated and has the nucleotide specificity expected for recognition of chemotactic signals. The concentration dependence of the peak amplitudes of cAMP binding exhibit an apparent threshold at 10(-8) M cAMP. The threshold concentration for cAMP binding that we measure is consistent with the concentration dependence of signal relay (cAMP secretion) and the chemotactic response. The kinetic data of binding and dissociation are very rapid, consistent with the time course of oscillations in receptor capacity (affinity). Specific binding oscillations are destroyed by heat or chymotrypsin but are insensitive to trypsin or glycosidase. A plasma membrane localization of receptor is supported by enrichment of cAMP binding in a plasma membrane preparation from differentiated cells. Receptor oscillations with a 2-min period are preserved in the membrane preparations, and the peak amplitudes are increased about 10-fold consistent with the enrichment of other plasma membrane markers. The alternating change in the receptor's binding capacity for cAMP may be the basis of the relay refractory period as well as the primary oscillator involved in the generation of postreceptor events such as stimulation of adenylate cyclase, cAMP secretion, and cellular movement, all of which have been previously shown to oscillate.  相似文献   

14.
Blood pressure is well established to contain a potential oscillation between 0.1 and 0.4 Hz, which is proposed to reflect resonant feedback in the baroreflex loop. A linear feedback model, comprising delay and lag terms for the vasculature, and a linear proportional derivative controller have been proposed to account for the 0.4-Hz oscillation in blood pressure in rats. However, although this model can produce oscillations at the required frequency, some strict relationships between the controller and vasculature parameters must be true for the oscillations to be stable. We developed a nonlinear model, containing an amplitude-limiting nonlinearity that allows for similar oscillations under a very mild set of assumptions. Models constructed from arterial pressure and sympathetic nerve activity recordings obtained from conscious rabbits under resting conditions suggest that the nonlinearity in the feedback loop is not contained within the vasculature, but rather is confined to the central nervous system. The advantage of the model is that it provides for sustained stable oscillations under a wide variety of situations even where gain at various points along the feedback loop may be altered, a situation that is not possible with a linear feedback model. Our model shows how variations in some of the nonlinearity characteristics can account for growth or decay in the oscillations and situations where the oscillations can disappear altogether. Such variations are shown to accord well with observed experimental data. Additionally, using a nonlinear feedback model, it is straightforward to show that the variation in frequency of the oscillations in blood pressure in rats (0.4 Hz), rabbits (0.3 Hz), and humans (0.1 Hz) is primarily due to scaling effects of conduction times between species.  相似文献   

15.
16.
Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell signaling. Recent advances led to the formulation of a new hydrodynamic model that explains the mechanism that drives both stochastic and oscillatory growth, as well as oscillations in cell signaling and ion fluxes. A critical analysis of evidence that has been used to challenge the validity of the hydrodynamic model yields new information on turgor pressure, cell mechanical properties and nonlinear dynamics in pollen tube growth. These results may have broader significance for plant cell growth.  相似文献   

17.
Neural oscillatory activities triggered by odorant stimulation have been often reported at various levels of olfactory nervous systems in vertebrates. To elucidate the origin of neural oscillations, we studied first the oscillatory properties of current responses of isolated olfactory receptor neurons (ORNs) of the rainbow trout to amino acid odorants, using a whole-cell voltage-clamp technique and found that the damped current oscillations were intrinsic in both ciliated and microvillous ORNs and occurred when ORNs were stimulated by odorants at high intensities. Continuous wavelet analysis using the Gabor function revealed that the dominant frequency of oscillations was 1.89 +/- 0.50 Hz (mean +/- SD, n = 92). There was no significant difference in oscillation frequency between the two types of ORNs and between different perfusion conditions with standard and Na(+)-free (choline) Ringer's solutions, but there was a slight difference in oscillation frequency between different holding potential conditions of negative and positive potentials. We then performed a computer simulation of the current responses with a cAMP olfactory transduction model. The model was based on the assumption that the current responses of ORNs were linearly related to the sum of concentrations of active cyclic-nucleotide-gated channels and Ca(2+)-activated Cl(-) channels, and was expressed by 12 differential equations with 44 different parameters. The simulation revealed that the oscillations of current responses of ORNs were mainly due to the oscillatory properties of intracellular cAMP and Ca(2+) concentrations. The necessary reaction component for the oscillations in the transduction model was direct inhibition of adenylate cyclase activity by Ca(2+). High Ca(2+) efflux by the Na(+)-Ca(2+) exchanger and cAMP-phosphodiesterase activity were most influential on the oscillations. The simulation completely represented the characteristics of current responses of ORNs: odorant-intensity-dependent response, intensity-dependent latency and adaptation. Thus, the simulation is generally applicable to current and voltage responses of ORNs equipped with cAMP olfactory transduction pathway in other vertebrate species. The simulation programs for Macintosh (cAMP 9.2.7 and 9.2.8 for MacOS 8.1 or later) and cAMP JAVA applet versions based on cAMP 9.2.8 have been published on the world wide web (http://bio2.sci.hokudai.ac.jp/bio/chinou1/noriyo_home.html).  相似文献   

18.
Basu S  Liljenström H 《Bio Systems》2001,63(1-3):57-69
The existence of neurons with intrinsic oscillations does not in itself explain the synchronization of local populations of neurons, but it is likely to pace population rhythms when the neurons are suitably coupled by chemical and/or electrical synapses. In the present study, we have investigated the role of spontaneously active cells as noisy or pacemaker units in setting global oscillations in a three-layered cortical model. The presence of a small number of noisy (spontaneously active) units induce oscillations at the network level in the range of the gamma rhythm. The number of noisy units in the network and their type (excitatory or inhibitory or excitatory and inhibitory together) determines the emergence of regular oscillations or aperiodic (chaotic) behaviour. It also determines the onset of the global behaviour. On replacing a noisy unit by a pacemaker unit, similar gamma oscillations were generated. With both noisy and pacemaker units, we found that certain characteristics of the spontaneous activity determine the delay period for the onset of global activity. Preliminary studies have been carried out with spontaneously active units having a chaotic dynamics but the results are much similar to that with a noisy burst. Different functional roles have been suggested for cortical oscillations, such as determining global functional states and specifying connectivity during development. Oscillations at different frequency bands, in particular in the gamma band (around 40 Hz), have also been associated with memory and attention. The presence of spontaneously active neurons, either with noisy or oscillatory activity, could be responsible for global oscillations in the absence of external stimuli in certain cortical areas in the mature brain.  相似文献   

19.
Previously, we have shown by sensitivity analysis, that the oscillatory behavior of nuclear factor (NF-kappaB) is coupled to free IkappaB kinase-2 (IKK2) and IkappaBalpha(IkappaBalpha), and that the phosphorylation of IkappaBalpha by IKK influences the amplitude of NF-kappaB oscillations. We have performed further analyses of the behavior of NF-kappaB and its signal transduction network to understand the dynamics of this system. A time lapse study of NF-kappaB translocation in 10,000 cells showed discernible oscillations in levels of nuclear NF-kappaB amongst cells when stimulated with interleukin (IL-1alpha), which suggests a small degree of synchronization amongst the cell population. When the kinetics for the phosphorylation of IkappaBalpha by IKK were measured, we found that the values for the affinity and catalytic efficiency of IKK2 for IkappaBalpha were dependent on assay conditions. The application of these kinetic parameters in our computational model of the NF-kappaB pathway resulted in significant differences in the oscillatory patterns of NF-kappaB depending on the rate constant value used. Hence, interpretation of in silico models should be made in the context of this uncertainty.  相似文献   

20.
Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

Electronic supplementary material

The online version of this article (doi:10.1007/s11693-015-9173-y) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号