首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
MOTIVATION: Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local similarity structures in the data as well as least squares optimization process. RESULTS: The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of Pearson correlation coefficients. Non-parametric missing values estimation method of LLSimpute are designed by introducing an automatic k-value estimator. In our experiments, the proposed LLSimpute method shows competitive results when compared with other imputation methods for missing value estimation on various datasets and percentages of missing values in the data. AVAILABILITY: The software is available at http://www.cs.umn.edu/~hskim/tools.html CONTACT: hpark@cs.umn.edu  相似文献   

2.
The presence of missing values in gel-based proteomics data represents a real challenge if an objective statistical analysis is pursued. Different methods to handle missing values were evaluated and their influence is discussed on the selection of important proteins through multivariate techniques. The evaluated methods consisted of directly dealing with them during the multivariate analysis with the nonlinear estimation by iterative partial least squares (NIPALS) algorithm or imputing them by using either k-nearest neighbor or Bayesian principal component analysis (BPCA) before carrying out the multivariate analysis. These techniques were applied to data obtained from gels stained with classical postrunning dyes and from DIGE gels. Before applying the multivariate techniques, the normality and homoscedasticity assumptions on which parametric tests are based on were tested in order to perform a sound statistical analysis. From the three tested methods to handle missing values in our datasets, BPCA imputation of missing values showed to be the most consistent method.  相似文献   

3.
Yang  Yang  Xu  Zhuangdi  Song  Dandan 《BMC bioinformatics》2016,17(1):109-116
Missing values are commonly present in microarray data profiles. Instead of discarding genes or samples with incomplete expression level, missing values need to be properly imputed for accurate data analysis. The imputation methods can be roughly categorized as expression level-based and domain knowledge-based. The first type of methods only rely on expression data without the help of external data sources, while the second type incorporates available domain knowledge into expression data to improve imputation accuracy. In recent years, microRNA (miRNA) microarray has been largely developed and used for identifying miRNA biomarkers in complex human disease studies. Similar to mRNA profiles, miRNA expression profiles with missing values can be treated with the existing imputation methods. However, the domain knowledge-based methods are hard to be applied due to the lack of direct functional annotation for miRNAs. With the rapid accumulation of miRNA microarray data, it is increasingly needed to develop domain knowledge-based imputation algorithms specific to miRNA expression profiles to improve the quality of miRNA data analysis. We connect miRNAs with domain knowledge of Gene Ontology (GO) via their target genes, and define miRNA functional similarity based on the semantic similarity of GO terms in GO graphs. A new measure combining miRNA functional similarity and expression similarity is used in the imputation of missing values. The new measure is tested on two miRNA microarray datasets from breast cancer research and achieves improved performance compared with the expression-based method on both datasets. The experimental results demonstrate that the biological domain knowledge can benefit the estimation of missing values in miRNA profiles as well as mRNA profiles. Especially, functional similarity defined by GO terms annotated for the target genes of miRNAs can be useful complementary information for the expression-based method to improve the imputation accuracy of miRNA array data. Our method and data are available to the public upon request.  相似文献   

4.
We consider the problem of predicting survival times of cancer patients from the gene expression profiles of their tumor samples via linear regression modeling of log-transformed failure times. The partial least squares (PLS) and least absolute shrinkage and selection operator (LASSO) methodologies are used for this purpose where we first modify the data to account for censoring. Three approaches of handling right censored data-reweighting, mean imputation, and multiple imputation-are considered. Their performances are examined in a detailed simulation study and compared with that of full data PLS and LASSO had there been no censoring. A major objective of this article is to investigate the performances of PLS and LASSO in the context of microarray data where the number of covariates is very large and there are extremely few samples. We demonstrate that LASSO outperforms PLS in terms of prediction error when the list of covariates includes a moderate to large percentage of useless or noise variables; otherwise, PLS may outperform LASSO. For a moderate sample size (100 with 10,000 covariates), LASSO performed better than a no covariate model (or noise-based prediction). The mean imputation method appears to best track the performance of the full data PLS or LASSO. The mean imputation scheme is used on an existing data set on lung cancer. This reanalysis using the mean imputed PLS and LASSO identifies a number of genes that were known to be related to cancer or tumor activities from previous studies.  相似文献   

5.
Improving cluster-based missing value estimation of DNA microarray data   总被引:1,自引:0,他引:1  
We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.  相似文献   

6.
Multiple imputation has become a widely accepted technique to deal with the problem of incomplete data. Typically, imputation of missing values and the statistical analysis are performed separately. Therefore, the imputation model has to be consistent with the analysis model. If the data are analyzed with a mixture model, the parameter estimates are usually obtained iteratively. Thus, if the data are missing not at random, parameter estimation and treatment of missingness should be combined. We solve both problems by simultaneously imputing values using the data augmentation method and estimating parameters using the EM algorithm. This iterative procedure ensures that the missing values are properly imputed given the current parameter estimates. Properties of the parameter estimates were investigated in a simulation study. The results are illustrated using data from the National Health and Nutrition Examination Survey.  相似文献   

7.
Methods to handle missing data have been an area of statistical research for many years. Little has been done within the context of pedigree analysis. In this paper we present two methods for imputing missing data for polygenic models using family data. The imputation schemes take into account familial relationships and use the observed familial information for the imputation. A traditional multiple imputation approach and multiple imputation or data augmentation approach within a Gibbs sampler for the handling of missing data for a polygenic model are presented.We used both the Genetic Analysis Workshop 13 simulated missing phenotype and the complete phenotype data sets as the means to illustrate the two methods. We looked at the phenotypic trait systolic blood pressure and the covariate gender at time point 11 (1970) for Cohort 1 and time point 1 (1971) for Cohort 2. Comparing the results for three replicates of complete and missing data incorporating multiple imputation, we find that multiple imputation via a Gibbs sampler produces more accurate results. Thus, we recommend the Gibbs sampler for imputation purposes because of the ease with which it can be extended to more complicated models, the consistency of the results, and the accountability of the variation due to imputation.  相似文献   

8.
Longitudinal data often encounter missingness with monotone and/or intermittent missing patterns. Multiple imputation (MI) has been popularly employed for analysis of missing longitudinal data. In particular, the MI‐GEE method has been proposed for inference of generalized estimating equations (GEE) when missing data are imputed via MI. However, little is known about how to perform model selection with multiply imputed longitudinal data. In this work, we extend the existing GEE model selection criteria, including the “quasi‐likelihood under the independence model criterion” (QIC) and the “missing longitudinal information criterion” (MLIC), to accommodate multiple imputed datasets for selection of the MI‐GEE mean model. According to real data analyses from a schizophrenia study and an AIDS study, as well as simulations under nonmonotone missingness with moderate proportion of missing observations, we conclude that: (i) more than a few imputed datasets are required for stable and reliable model selection in MI‐GEE analysis; (ii) the MI‐based GEE model selection methods with a suitable number of imputations generally perform well, while the naive application of existing model selection methods by simply ignoring missing observations may lead to very poor performance; (iii) the model selection criteria based on improper (frequentist) multiple imputation generally performs better than their analogies based on proper (Bayesian) multiple imputation.  相似文献   

9.
MOTIVATION: Missing values are problematic for the analysis of microarray data. Imputation methods have been compared in terms of the similarity between imputed and true values in simulation experiments and not of their influence on the final analysis. The focus has been on missing at random, while entries are missing also not at random. RESULTS: We investigate the influence of imputation on the detection of differentially expressed genes from cDNA microarray data. We apply ANOVA for microarrays and SAM and look to the differentially expressed genes that are lost because of imputation. We show that this new measure provides useful information that the traditional root mean squared error cannot capture. We also show that the type of missingness matters: imputing 5% missing not at random has the same effect as imputing 10-30% missing at random. We propose a new method for imputation (LinImp), fitting a simple linear model for each channel separately, and compare it with the widely used KNNimpute method. For 10% missing at random, KNNimpute leads to twice as many lost differentially expressed genes as LinImp. AVAILABILITY: The R package for LinImp is available at http://folk.uio.no/idasch/imp.  相似文献   

10.
To test for association between a disease and a set of linked markers, or to estimate relative risks of disease, several different methods have been developed. Many methods for family data require that individuals be genotyped at the full set of markers and that phase can be reconstructed. Individuals with missing data are excluded from the analysis. This can result in an important decrease in sample size and a loss of information. A possible solution to this problem is to use missing-data likelihood methods. We propose an alternative approach, namely the use of multiple imputation. Briefly, this method consists in estimating from the available data all possible phased genotypes and their respective posterior probabilities. These posterior probabilities are then used to generate replicate imputed data sets via a data augmentation algorithm. We performed simulations to test the efficiency of this approach for case/parent trio data and we found that the multiple imputation procedure generally gave unbiased parameter estimates with correct type 1 error and confidence interval coverage. Multiple imputation had some advantages over missing data likelihood methods with regards to ease of use and model flexibility. Multiple imputation methods represent promising tools in the search for disease susceptibility variants.  相似文献   

11.
ABSTRACT: BACKGROUND: Single nucleotide polymorphism (SNP) genotyping assays normally give rise to certain percents of no-calls; the problem becomes severe when the target organisms, such as cattle, do not have a high resolution genomic sequence. Missing SNP genotypes, when related to target traits, would confound downstream data analyses such as genome-wide association studies (GWAS). Existing methods for recovering the missing values are successful to some extent --- either accurate but not fast enough or fast but not accurate enough. RESULTS: To a target missing genotype, we take only the SNP loci within a genetic distance vicinity and only the samples within a similarity vicinity into our local imputation process. For missing genotype imputation, the comparative performance evaluations through extensive simulation studies using real human and cattle genotype datasets demonstrated that our nearest neighbor based local imputation method was one of the most efficient methods, and outperformed existing methods except the time-consuming fastPHASE; for missing haplotype allele imputation, the comparative performance evaluations using real mouse haplotype datasets demonstrated that our method was not only one of the most efficient methods, but also one of the most accurate methods. CONCLUSIONS: Given that fastPHASE requires a long imputation time on medium to high density datasets, and that our nearest neighbor based local imputation method only performed slightly worse, yet better than all other methods, one might want to adopt our method as an alternative missing SNP genotype or missing haplotype allele imputation method.  相似文献   

12.
Functional trait databases are powerful tools in ecology, though most of them contain large amounts of missing values. The goal of this study was to test the effect of imputation methods on the evaluation of trait values at species level and on the subsequent calculation of functional diversity indices at community level using functional trait databases. Two simple imputation methods (average and median), two methods based on ecological hypotheses, and one multiple imputation method were tested using a large plant trait database, together with the influence of the percentage of missing data and differences between functional traits. At community level, the complete‐case approach and three functional diversity indices calculated from grassland plant communities were included. At the species level, one of the methods based on ecological hypothesis was for all traits more accurate than imputation with average or median values, but the multiple imputation method was superior for most of the traits. The method based on functional proximity between species was the best method for traits with an unbalanced distribution, while the method based on the existence of relationships between traits was the best for traits with a balanced distribution. The ranking of the grassland communities for their functional diversity indices was not robust with the complete‐case approach, even for low percentages of missing data. With the imputation methods based on ecological hypotheses, functional diversity indices could be computed with a maximum of 30% of missing data, without affecting the ranking between grassland communities. The multiple imputation method performed well, but not better than single imputation based on ecological hypothesis and adapted to the distribution of the trait values for the functional identity and range of the communities. Ecological studies using functional trait databases have to deal with missing data using imputation methods corresponding to their specific needs and making the most out of the information available in the databases. Within this framework, this study indicates the possibilities and limits of single imputation methods based on ecological hypothesis and concludes that they could be useful when studying the ranking of communities for their functional diversity indices.  相似文献   

13.
Cook RJ  Zeng L  Yi GY 《Biometrics》2004,60(3):820-828
In recent years there has been considerable research devoted to the development of methods for the analysis of incomplete data in longitudinal studies. Despite these advances, the methods used in practice have changed relatively little, particularly in the reporting of pharmaceutical trials. In this setting, perhaps the most widely adopted strategy for dealing with incomplete longitudinal data is imputation by the "last observation carried forward" (LOCF) approach, in which values for missing responses are imputed using observations from the most recently completed assessment. We examine the asymptotic and empirical bias, the empirical type I error rate, and the empirical coverage probability associated with estimators and tests of treatment effect based on the LOCF imputation strategy. We consider a setting involving longitudinal binary data with longitudinal analyses based on generalized estimating equations, and an analysis based simply on the response at the end of the scheduled follow-up. We find that for both of these approaches, imputation by LOCF can lead to substantial biases in estimators of treatment effects, the type I error rates of associated tests can be greatly inflated, and the coverage probability can be far from the nominal level. Alternative analyses based on all available data lead to estimators with comparatively small bias, and inverse probability weighted analyses yield consistent estimators subject to correct specification of the missing data process. We illustrate the differences between various methods of dealing with drop-outs using data from a study of smoking behavior.  相似文献   

14.
Gan X  Liew AW  Yan H 《Nucleic acids research》2006,34(5):1608-1619
Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.  相似文献   

15.
Bayesian networks can be used to identify possible causal relationships between variables based on their conditional dependencies and independencies, which can be particularly useful in complex biological scenarios with many measured variables. Here we propose two improvements to an existing method for Bayesian network analysis, designed to increase the power to detect potential causal relationships between variables (including potentially a mixture of both discrete and continuous variables). Our first improvement relates to the treatment of missing data. When there is missing data, the standard approach is to remove every individual with any missing data before performing analysis. This can be wasteful and undesirable when there are many individuals with missing data, perhaps with only one or a few variables missing. This motivates the use of imputation. We present a new imputation method that uses a version of nearest neighbour imputation, whereby missing data from one individual is replaced with data from another individual, their nearest neighbour. For each individual with missing data, the subsets of variables to be used to select the nearest neighbour are chosen by sampling without replacement the complete data and estimating a best fit Bayesian network. We show that this approach leads to marked improvements in the recall and precision of directed edges in the final network identified, and we illustrate the approach through application to data from a recent study investigating the causal relationship between methylation and gene expression in early inflammatory arthritis patients. We also describe a second improvement in the form of a pseudo-Bayesian approach for upweighting certain network edges, which can be useful when there is prior evidence concerning their directions.  相似文献   

16.
MOTIVATION: Significance analysis of differential expression in DNA microarray data is an important task. Much of the current research is focused on developing improved tests and software tools. The task is difficult not only owing to the high dimensionality of the data (number of genes), but also because of the often non-negligible presence of missing values. There is thus a great need to reliably impute these missing values prior to the statistical analyses. Many imputation methods have been developed for DNA microarray data, but their impact on statistical analyses has not been well studied. In this work we examine how missing values and their imputation affect significance analysis of differential expression. RESULTS: We develop a new imputation method (LinCmb) that is superior to the widely used methods in terms of normalized root mean squared error. Its estimates are the convex combinations of the estimates of existing methods. We find that LinCmb adapts to the structure of the data: If the data are heterogeneous or if there are few missing values, LinCmb puts more weight on local imputation methods; if the data are homogeneous or if there are many missing values, LinCmb puts more weight on global imputation methods. Thus, LinCmb is a useful tool to understand the merits of different imputation methods. We also demonstrate that missing values affect significance analysis. Two datasets, different amounts of missing values, different imputation methods, the standard t-test and the regularized t-test and ANOVA are employed in the simulations. We conclude that good imputation alleviates the impact of missing values and should be an integral part of microarray data analysis. The most competitive methods are LinCmb, GMC and BPCA. Popular imputation schemes such as SVD, row mean, and KNN all exhibit high variance and poor performance. The regularized t-test is less affected by missing values than the standard t-test. AVAILABILITY: Matlab code is available on request from the authors.  相似文献   

17.
Missing data are unavoidable in environmental epidemiologic surveys. The aim of this study was to compare methods for handling large amounts of missing values: omission of missing values, single and multiple imputations (through linear regression or partial least squares regression), and a fully Bayesian approach. These methods were applied to the PARIS birth cohort, where indoor domestic pollutant measurements were performed in a random sample of babies'' dwellings. A simulation study was conducted to assess performances of different approaches with a high proportion of missing values (from 50% to 95%). Different simulation scenarios were carried out, controlling the true value of the association (odds ratio of 1.0, 1.2, and 1.4), and varying the health outcome prevalence. When a large amount of data is missing, omitting these missing data reduced statistical power and inflated standard errors, which affected the significance of the association. Single imputation underestimated the variability, and considerably increased risk of type I error. All approaches were conservative, except the Bayesian joint model. In the case of a common health outcome, the fully Bayesian approach is the most efficient approach (low root mean square error, reasonable type I error, and high statistical power). Nevertheless for a less prevalent event, the type I error is increased and the statistical power is reduced. The estimated posterior distribution of the OR is useful to refine the conclusion. Among the methods handling missing values, no approach is absolutely the best but when usual approaches (e.g. single imputation) are not sufficient, joint modelling approach of missing process and health association is more efficient when large amounts of data are missing.  相似文献   

18.
Missing value estimation methods for DNA microarrays   总被引:39,自引:0,他引:39  
MOTIVATION: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data. RESULTS: We present a comparative study of several methods for the estimation of missing values in gene microarray data. We implemented and evaluated three methods: a Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors (KNNimpute), and row average. We evaluated the methods using a variety of parameter settings and over different real data sets, and assessed the robustness of the imputation methods to the amount of missing data over the range of 1--20% missing values. We show that KNNimpute appears to provide a more robust and sensitive method for missing value estimation than SVDimpute, and both SVDimpute and KNNimpute surpass the commonly used row average method (as well as filling missing values with zeros). We report results of the comparative experiments and provide recommendations and tools for accurate estimation of missing microarray data under a variety of conditions.  相似文献   

19.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

20.

Background

In modern biomedical research of complex diseases, a large number of demographic and clinical variables, herein called phenomic data, are often collected and missing values (MVs) are inevitable in the data collection process. Since many downstream statistical and bioinformatics methods require complete data matrix, imputation is a common and practical solution. In high-throughput experiments such as microarray experiments, continuous intensities are measured and many mature missing value imputation methods have been developed and widely applied. Numerous methods for missing data imputation of microarray data have been developed. Large phenomic data, however, contain continuous, nominal, binary and ordinal data types, which void application of most methods. Though several methods have been developed in the past few years, not a single complete guideline is proposed with respect to phenomic missing data imputation.

Results

In this paper, we investigated existing imputation methods for phenomic data, proposed a self-training selection (STS) scheme to select the best imputation method and provide a practical guideline for general applications. We introduced a novel concept of “imputability measure” (IM) to identify missing values that are fundamentally inadequate to impute. In addition, we also developed four variations of K-nearest-neighbor (KNN) methods and compared with two existing methods, multivariate imputation by chained equations (MICE) and missForest. The four variations are imputation by variables (KNN-V), by subjects (KNN-S), their weighted hybrid (KNN-H) and an adaptively weighted hybrid (KNN-A). We performed simulations and applied different imputation methods and the STS scheme to three lung disease phenomic datasets to evaluate the methods. An R package “phenomeImpute” is made publicly available.

Conclusions

Simulations and applications to real datasets showed that MICE often did not perform well; KNN-A, KNN-H and random forest were among the top performers although no method universally performed the best. Imputation of missing values with low imputability measures increased imputation errors greatly and could potentially deteriorate downstream analyses. The STS scheme was accurate in selecting the optimal method by evaluating methods in a second layer of missingness simulation. All source files for the simulation and the real data analyses are available on the author’s publication website.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0346-6) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号