首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rather than being polygenic, complex disorders probably represent umbrella terms for collections of conditions caused by rare, recent mutations in any of a large number of different genes.  相似文献   

2.
Just how complex is the Brassica S-receptor complex?   总被引:3,自引:0,他引:3  
Of the plant self-incompatibility (SI) systems investigated to date, that possessed by members of the Brassicaceae is currently the best understood. Whilst the recent demonstrations of interactions between the male determinant (S-locus cysteine rich protein, SCR) and the female determinant (S-locus receptor kinase, SRK) indicate the minimal requirement for SI in Brassica, no consensus exists as to the nature of these molecules in vivo and the potential involvement of accessory molecules in establishing the active S-receptor complex. Variation between S haplotypes appears to be present in the molecular composition of the receptor complex, the regulation of downstream signalling and the requirement for accessory molecules. This review discusses what constitutes an active receptor complex and highlights potential differences between haplotypes. The role of accessory molecules, in particular SLG (S-locus glycoprotein) and low molecular weight pollen coat proteins (PCPs), in pollination are discussed, as is the link between SI and unilateral incompatibility (UI).  相似文献   

3.
Damage from oxidative stress and mitochondrial dysfunction occur together in many common neurodegenerative diseases. The enzymes that form the mitochondrial alpha-ketoglutarate- dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme system of the tricarboxylic acid cycle, might mediate the interaction of these processes. KGDHC activity is reduced in numerous age-related neurodegenerative diseases and is diminished by oxidative stress. In Alzheimer's disease (AD), the reduction correlates highly to diminished mental performance. Thus, research has focused on the mechanisms by which select oxidants reduce KGDHC and the consequences of such a reduction. Diminished KGDHC in cells is associated with apoptosis without changes in the mitochondrial membrane potential. Studies of isolated mitochondria and of animal models suggest that a reduction in KGDHC can predispose to damage by other toxins that promote neurodegeneration. Diminished oxidative metabolism can be plausibly linked to pathological features of neurodegenerative diseases (e.g., reduced mental function, the plaques and tangles in AD). Thus, reductions in KGDHC might be central to the pathophysiology of these diseases. Studies of proteins, cells, animal models, and humans suggest that treatments to diminish, or bypass, the reduction in KGDHC might be beneficial in age-related neurodegenerative disorders.  相似文献   

4.
5.
The chemokine receptor 5 (CCR5) belongs to the superfamily of serpentine G protein-coupled receptors (GPCRs). The DRY motif (Asp, Arg, Tyr) of the intracellular loop 2 (ICL2), which is highly conserved in the GPCRs has been shown to be essential for the stability of folding of CCR5 and the interaction with β-arrestin. But the molecular mechanism by which it recognizes and interacts with β-arrestin has not been elucidated. In the present study, we described the active state of the β-arrestin structure using normal mode analysis and characterized the binding cleft of CCR5-ICL2 with β-arrestin using SABRE© docking tool and molecular dynamics simulation. Based on our computational results, we proposed a mode of binding between the ICL2 loop of CCR5 and β-arrestin structure, and modeled the energetically stable β-arrestin/CCR5 complex. In view of CCR5’s importance as a therapeutic target for the treatment of HIV, this observation provides novel insight into the β-arrestin/CCR5 pathway. As a result, the current computational study of the detailed β-arrestin/CCR5 binding complex could provide the rationale for the development of next generation of HIV peptide inhibitors as therapeutic agents.  相似文献   

6.
In order to establish the portrait of Urbilateria, the common ancestor of triblastic metazoan, this paper focuses on the antero-posterior segmentation frequently considered as characterising the bilaterian bauplan. The synthesis presented here describes the morphological, anatomical and functional aspects of this organisation. Furthermore it analyses the conditions of its emergence during the ontogenesis of Annelids, Arthropods and Chordates and identifies its genetic bases. The provided data exhibit the unitary character of the segmentation modalities among protostomian and deuterostomian organisms. This process occurs in two phases, involving a posterior proliferative zone after the gastrulation. It shows the similarity of the expression patterns of orthologous genes, the implication of comparable signalisation and regulation pathways. The congruence of the results obtained at both structural and molecular levels reinforce the segmental organisation conception of the common ancestor of Bilaterians.  相似文献   

7.
8.
Can Arabidopsis make complex alkaloids?   总被引:5,自引:0,他引:5  
  相似文献   

9.
10.
11.
Mammalian lysosomal sialidase exists as an enzyme complex with β-galactosidase and carboxypeptidase, so-called “protective protein.” In this article, we report that chicken sialidase also occurs as a complex with β-galactosidase and protective protein. The purified sialidase complex had a molecular weight > 700 kDa on gel filtration and showed four protein components of 76, 65, 54 and 48 kDa on SDS-PAGE under nonreducing conditions. N-Terminal sequences of the 65- and 48-kDa proteins were homologous to human lysosomal β-galactosidase and protective protein precursor, respectively. The purified sialidase complex also had carboxypeptidase activity. Both sialidase and carboxypeptidase activities were precipitated together by an antibody against chicken β-galactosidase. The complex reversibly dissociated into 120-kDa β-galactosidase dimer and 100-kDa carboxypeptidase dimer at pH 7.5, but the sialidase irreversibly inactivated during the depolymerization. These findings indicate that chicken sialidase exists as a multienzyme complex, by which the sialidase activity appears to be stabilized.  相似文献   

12.
Lowe M 《Current biology : CB》2002,12(5):R166-R167
Whether Golgi biogenesis occurs by self-assembly or around a pre-existing template is currently a matter of debate. Recent studies have shown that Golgi structural proteins are more dynamic than previously thought, suggesting that self-assembly of the Golgi complex may be possible.  相似文献   

13.
Experiments performed with a cell-free system in tris-EDTA buffer, pH 7.4, indicate that the high-speed supernatant fraction of the rat uterus contains all the factors necessary to transform the 8S cytoplasmic oestradiol-receptor complex to the nuclear complex. The transformation is temperature-dependent. This nuclear complex was extracted in the form of a 5S particle with 0.4m-KCl from sediments of either uterine or heart nuclei that had been incubated together with the cytoplasmic soluble fraction of the uterus at 2 degrees C for 30min. This complex can also be obtained similarly from the soluble fraction of the uterus, incubated in the absence of nuclei. Previous warming of the soluble fraction to 37 degrees C for 7min was necessary for the successful extraction of the nuclear particle under these conditions of incubation. After an incubation of the transformed complex with the nuclear sediment at 37 degrees C for 7min, the 5S complex was extractable from the uterine nuclear sediment but not from the heart nuclear sediment, which may indicate the tissue specificity of the nuclear acceptor sites for the transformed complex. The extracted uterine nuclear complex sediments in the 5S region, but whether it is the native complex or a subunit or other part of the native complex resulting from the extraction with salt is unknown.  相似文献   

14.
15.
16.
The mixed lineage leukemia (MLL) gene encodes a very large nuclear protein homologous to Drosophila trithorax (trx). MLL is required for the proper maintenance of HOX gene expression during development and hematopoiesis. The exact regulatory mechanism of HOX gene expression by MLL is poorly understood, but it is believed that MLL functions at the level of chromatin organization. MLL was identified as a common target of chromosomal translocations associated with human acute leukemias. About 50 different MLL fusion partners have been isolated to date, and while similarities exist between groups of partners, there exists no unifying property shared by all the partners. MLL gene rearrangements are found in leukemias with both lymphoid and myeloid phenotypes and are often associated with infant and secondary leukemias. The immature phenotype of the leukemic blasts suggests an important role for MLL in the early stages of hematopoietic development. Mll homozygous mutant mice are embryonic lethal and exhibit deficiencies in yolk sac hematopoiesis. Recently, two different MLL-containing protein complexes have been isolated. These and other gain- and loss-of-function experiments have provided insight into normal MLL function and altered functions of MLL fusion proteins. This article reviews the progress made toward understanding the function of the wild-type MLL protein. While many advances in understanding this multifaceted protein have been made since its discovery, many challenging questions remain to be answered.  相似文献   

17.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis, and is a potential target for treatment of metabolic diseases as well as cancer. AMPK can be phosphorylated and activated by the tumor suppressor LKB1 or the Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ). We previously identified a physical complex between CaMKKβ and AMPK (Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., and Means, A. R. (2008) Cell Metabolism 7, 377–388). Here we expand our analysis of the CaMKKβ–AMPK signaling complex and show that whereas CaMKKβ can form a complex with and activate AMPK, CaMKKα cannot. In addition, we show that CaMKKβ and AMPK associate through their kinase domains, and CaMKKβ must be in an active conformation in order to bind AMPK but not to associate with an alternative substrate, Ca2+/Calmodulin-dependent protein kinase IV (CaMKIV). Our results demonstrate that CaMKKβ and AMPK form a unique signaling complex. This raises the possibility that the CaMKKβ–AMPK complex can be specifically targeted by small molecule drugs to treat disease.  相似文献   

18.
Many signaling pathways in higher eukaryotes use Ras-like small GTPases. Here, we ask how complex are these small GTPase signaling pathways in trypanosomes? We seek to address this issue by comparisons with the representation of both the GTPase molecules and their accessory factors in several genomes.  相似文献   

19.
Z-Ala-Pro-Phe-glyoxal (where Z is benzyloxycarbonyl) has been shown to be a competitive inhibitor of subtilisin with a Ki=2.3±0.2 μM at pH 7.0 and 25 °C. Using Z-Ala-Pro-[2-13C]Phe-glyoxal we have detected a signal at 107.3 ppm by 13C NMR, which we assign to the tetrahedral adduct formed between the hydroxy group of serine-195 and the 13C-enriched keto-carbon of the inhibitor. The chemical shift of this signal is pH independent from pH 4.2 to 7.0 and we conclude that the oxyanion pKa<3. This is the first observation of oxyanion formation in a reversible subtilisin–inhibitor complex. The inhibitor is bound as a hemiketal which is in slow exchange with the free inhibitor. Inhibitor binding depends on a pKa of ~6.5 in the free enzyme and on a pKa<3.0 when the inhibitor is bound to subtilisin. Protonation of the oxyanion promotes the disassociation of the inhibitor. We show that oxyanion formation cannot be rate limiting during catalysis and that subtilisin stabilises the oxyanion by at least 45.1 kJ mol?1. We conclude that if the energy required for oxyanion stabilisation is utilised as binding energy in drug design it should make a significant contribution to inhibitor potency.  相似文献   

20.
Liprins are highly conserved scaffold proteins that regulate cell adhesion, cell migration, and synapse development by binding to diverse target proteins. The molecular basis governing liprin/target interactions is poorly understood. The liprin-α2/CASK complex structure solved here reveals that the three SAM domains of liprin-α form an integrated supramodule that binds to the CASK kinase-like domain. As supported by biochemical and cellular studies, the interaction between liprin-α and CASK is unique to vertebrates, implying that the liprin-α/CASK interaction is?likely to regulate higher-order brain functions in mammals. Consistently, we demonstrate that three recently identified X-linked mental retardation mutants of CASK are defective in binding to liprin-α. We also solved the liprin-α/liprin-β SAM domain complex structure, which uncovers the mechanism underlying liprin heterodimerizaion. Finally, formation of the CASK/liprin-α/liprin-β ternary complex suggests that liprins can mediate assembly of target proteins into large protein complexes capable of regulating numerous cellular activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号