首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. Tomato plants were colonised by the arbuscular mycorrhizal fungus Glomus fasciculatum, indicating that alterations of the exudation pattern depended on the degree of root AM colonisation. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

2.
Abstract

In this study we assessed microconidia germination of the tomato pathogens F. oxysporum f. sp. lycopersici (Fol) and F. oxysporum f. sp. radicis-lycopersici (Forl) in the presence of root exudates. Tomato root exudates stimulated microconidia germination and the level of stimulation was affected by plant age. Treatment of root exudates with insoluble polyvinylpolypyrrolidone, which binds phenolic compounds, indicated that tomato root exudates contain phenolic compounds inhibitory to F. oxysporum microconidia germination. Our study indicates that tomato root exudates similarly stimulate microconidia germination of both Fol and Forl. However, individual F. oxysporum strains differ in the degree of germination response to the root exudates. Furthermore, root exudates from non-host plants also contain compounds that stimulate microconidia germination of Fol. In general, the effects of root exudates from non-host plants did not differ considerably from those of tomato. The ability of phenolic compounds to inhibit germination of Fol seems not to be plant-specific.  相似文献   

3.
 The effect of root exudates from onions differing in P status on spore germination and hyphal growth of arbuscular mycorrhizal fungi was investigated. Onion (Allium cepa) was grown in solution culture at different phosphorus concentrations (0, 0.1, 1.0, 8.0 and 24.0 mg P l–1) and root exudates were collected. When spores of the arbuscular mycorrhizal fungus, Gigaspora margarita were incubated with these root exudates, spore germination was only slightly affected but hyphal growth was greatly affected, particularly with exudates from P-deficient plants. This suggests that the P nutrition of host plants influences the composition of root exudates and thereby the hyphal growth of arbuscular mycorrhizal fungi. Accepted: 25 June 1995  相似文献   

4.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

5.
Paenibacillus polymyxa SQR-21 has been identified as a potential agent for the biocontrol of Fusarium wilt in watermelon, which is caused by the pathogenic fungus Fusarium oxysporum f.sp. niveum (FON). In the present study, the effects of root exudates from watermelon plants inoculated or non-inoculated with either SQR-21 or FON on conidial germination of FON were investigated. Compared to the control, conidial germination was decreased with root exudates from SQR-21-inoculated plants, but conidial germination was enhanced by root exudates from FON-inoculated plants. Maximal germination was found with root exudates from FON-inoculated plants after 30 d, which was 1.35 times more germination than the control. A split-root system was designed to verify that the alterations of the exudation pattern in SQR-21- inoculated or FON-inoculated watermelon roots were not only local, but also systemic. Cinnamic acid was found in the watermelon root exudates. An assay to test the effects of cinnamic acid on conidial germination of FON revealed that the stimulation of conidial germination was observed from cinnamic acid concentrations ranging from 0 to 30 μg/ml. In conclusion, both of SQR-21 and FON systemically affects watermelon root exudates. These results will help to the better understanding of the plant-microbe communication and will guide to improve the biocontrol strategies against Fusarium wilt of watermelon plants.  相似文献   

6.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) can control soilborne diseases such as Fusarium oxysporum f.sp. lycopersici (Fol). Root exudates play an important role in plant–microbe interactions in the rhizosphere, especially, in the initial phase of these interactions. In this work, we focus on (i) elucidating dynamics in root exudation of Solanum lycopersicum L. in an intercropping system due to AMF and/or Fol; (ii) its effect on Fol development in vitro; and (iii) the testing of the root exudate compounds identified in the chromatographic analyses in terms of effects on fungal growth in in vitro assays. GC‐MS analyses revealed an AMF‐dependent increase in sugars and decrease in organic acids, mainly glucose and malate. In the HPLC analyses, an increase in chlorogenic acid was evident in the combined treatment of AMF and Fol, which is to our knowledge the first report about an increase in chlorogenic acid in root exudates of AM plants challenged with Fol compared with plants inoculated with AMF only, clearly indicating changes in root exudation due to AMF and Fol. Root exudates of AMF tomato plants stimulate the germination rate of Fol, whereas the co‐inoculation of AMF and Fol leads to a reduction in spore germination. In the in vitro assays, citrate and chlorogenic acid could be identified as possible candidates for the reduction in Fol germination rate in the root exudates of the AMF+Fol treatment because they proved inhibition at concentrations naturally occurring in the rhizosphere.  相似文献   

8.
Plants with different Fe-mobilization properties are known to differ in the amount and kind of Fe-reducing and Fe-chelating compounds exuded by their roots. Although rhizosphere bacteria are known to affect the exudation of organic compounds by the plant roots, their effect on the root exudates of plants differing in Fe-mobilization properties is not known. We studied the effect of Pseudomonas fluorescens, on the exudation of sugars and organic and amino acids by roots of an iron chlorosis-resistant (T3238FER) and a chlorosis-susceptible (T3238fer) tomato mutant. Under sterile conditions two tomato mutants grew equally well and did not differ in the total amount of sugars and organic acid exuded by their roots. More amino acids, however, were exuded by the roots of T3238FER than T323fer. Mutants differed in the amount of oxalic acid and the amino acids Ala, Asp, Gaba, Gln, Gly, His, Hyl, Ile, Leu, Lys, Phe, Pro, and Val exuded by their roots into sterile rooting media. Addition of P. fluorescens to the rooting medium did not affect the growth of T3238FER but stimulated the root growth of chlorosis-susceptible T3238fer, reduced the amounts of glucose, arabinose and fructose but increased the amount of sucrose, reduced the amounts of fumaric, malic and oxalic acid but increased the amounts of citric and succinic acid in the rooting media of both mutants. P. fluorescens resulted in the following changes in the amino acids in the rooting media: reduced the amounts of Gly, Leu, and Lys in T3238FER, and of Asp, Gln, Hyp, and Ile in T3238fer, and increased the amounts of Cys, Glu, His, Hyp, Ile, Phe and Tyr in T3238FER and of Ala, Glu, His, Phe, and Ser in T323fer—in cases more than 40-fold. These differential effects of P. fluorescens in altering the pattern of organic and amino acids compounds with some Fe-chelating properties detected in the rooting medium of these two mutants may indicate that the differences in Fe-chlorosis susceptibility of these tomato mutants may be the result of, or modified by, the interactions between plant roots and rhizosphere microorganisms. We postulate that the Fe-chlorosis susceptibility in plants may be the product of the interactions between soil microorganisms and plant roots, and may not be solely related to the plant per se.  相似文献   

9.
Root exudates of plants   总被引:4,自引:0,他引:4  
V. Vančura 《Plant and Soil》1967,27(3):319-328
Summary The effect of temperature on the exudation of sugars and amino acids from germinating seeds of maize and cucumber and the effect of the so called cold shock on root exudation of plant seedling was studied. After the first forty-eight hours the exudation of these compounds from germinating seeds generally rises in proportion to the temperature. However, certain relative changes were observed in the composition of the exudates. Exudation of maltose and fructose with arabinose, for example is lower at 28°C than at 19°C.When plants previously growing under favourable temperature conditions were exposed for three days to a lower temperature, there was a several times higher exudation from the roots of maize and a marked rise in exudation from roots of cucumber in comparison with control plants. In the exudates of maize affected by cold shock 3 new oligosaccharides and fructose with saccharose in addition to previously detected substances were found.  相似文献   

10.
In a medium containing bean, barley and wheat seed exudates,Xanthomonas phaseoli var.fuscans (Burk.) Starr et Burk. grew substantially better than in that containing root exudates of these plants. When the bacteria were cultivated in a medium containing root exudates of bean plants deprived of cotyledons after eleven days of growth, growth was slower than in the presence of root exudates of control plants. On the other hand, the growth was stimulated in a medium containing root exudates of bean plants deprived of leaves. It was found that seed exudates of these plants contained biologically active peptides stimulating the growth of the microorganism. These peptides were not found in root exudates. These findings suggest a relationship between the survival ofXanthomonas phaseoli var.fuscans in the rhizosphere of bean and the exudation of biologically active peptides originating from the stock substances of seeds and cotyledons.  相似文献   

11.
The effect of different membrane filters on the bioactivity of tomato root exudates was tested in an in vitro assay addressing the germination of microconidia of the soil-borne fungus Fusarium oxysporum f. sp. lycopersici . Membrane filtration of unsterile root exudates with filters of different membrane materials and filter brands resulted in an increased microconidia germination. This effect varied depending on the used membrane filter but was lacking when sterile root exudates were used. The alteration of the bioactivity of unsterile root exudates therefore seems to be due to the presence of microbial contaminants. The varying effects of different filter brands may be due to their differential potential of retaining inhibitory compounds. When working with root exudates, such effects of membrane filtration have to be taken into account.  相似文献   

12.
Tomato plants pre-colonised by the arbuscular mycorrhizal fungusGlomus mosseae showed decreased root damage by the pathogenPhytophthora nicotianae var.parasitica. In analyses of the cellular bases of their bioprotective effect, a prerequisite for cytological investigations of tissue interactions betweenG. mosseae andP. nicotianae v.parasitica was to discriminate between the hyphae of the two fungi within root tissues. We report the use of antibodies as useful tools, in the absence of an appropriate stain for distinguishing hyphae ofP. nicotianae v.parasitica from those ofG. mosseae inside roots, and present observations on the colonisation patterns by the pathogenic fungus alone or during interactions in mycorrhizal roots. Infection intensity of the pathogen, estimated using an immunoenzyme labelling technique on whole root fragments, was lower in mycorrhizal roots. Immunogold labelling ofP. nicotianae v.parasitica on cross-sections of infected tomato roots showed that inter or intracellular hyphae developed mainly in the cortex, and their presence induced necrosis of host cells, the wall and contents of which showed a strong autofluorescence in reaction to the pathogen. In dual fungal infections of tomato root systems, hyphae of the symbiont and the pathogen were in most cases in different root regions, but they could also be observed in the same root tissues. The number ofP. nicotianae v.parasitica hyphae growing in the root cortex was greatly reduced in mycorrhizal root systems, and in mycorrhizal tissues infected by the pathogen, arbuscule-containing cells surrounded by intercellularP. nicotianae v.parasitica hyphae did not necrose and only a weak autofluorescence was associated with the host cells. Results are discussed in relation to possible processes involved in the phenomenon of bioprotection in arbuscular mycorrhizal plants.  相似文献   

13.
Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani   总被引:1,自引:0,他引:1  
Mycorrhiza frequently leads to the control of root pathogens, but appears to have the opposite effect on leaf pathogens. In this study, we studied mycorrhizal effects on the development of early blight in tomato (Solanum lycopersicum) caused by the necrotrophic fungus Alternaria solani. Alternaria-induced necrosis and chlorosis of all leaves were studied in mycorrhizal and non-mycorrhizal plants over time course and at different soil P levels. Mycorrhizal tomato plants had significantly less A. solani symptoms than non-mycorrhizal plants, but neither plant growth nor phosphate uptake was enhanced by mycorrhizas. An increased P supply had no effect on disease severity in non-mycorrhizal plants, but led to a higher disease severity in mycorrhizal plants. This was parallel to a P-supply-induced reduction in mycorrhiza formation. The protective effect of mycorrhizas towards development of A. solani has some parallels to induced systemic resistance, mediated by rhizobacteria: both biocontrol agents are root-associated organisms and both are effective against necrotrophic pathogens. The possible mechanisms involved are discussed.  相似文献   

14.
 The effect of root exudates from P-deficient onion on root colonisation by an arbuscular mycorrhizal fungus was examined. Onions (Allium cepa L.) were grown in solution culture at phosphorus concentrations of 0 (P0) and 2 (P2) mg P l–1. Root exudates were collected and fractionated with Amberlite XAD-4 resin to give EtOH and water soluble fractions. Onions inoculated with the arbuscular mycorrhizal fungus Gigaspora margarita Becker & Hall were grown with or without (control) root exudates and exudate fractions in a growth chamber. After 24 days, arbuscular mycorrhiza levels and appressoria formation had increased in plants treated with P0-root exudate or the P0-EtOH fraction when compared to corresponding P2 treatments or control plants. P0 and P2 water-soluble fractions did not significantly affect either aspect of fungal development. These results suggest that hydrophobic compounds found in root exudates from P-deficient onion increase appressorium formation and, therefore, enhance mycorrhiza development. Accepted: 2 June 1998  相似文献   

15.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

16.
Abstract

Although Rhizoctonia solani is a cosmopolitan soilborne pathogen, the genus includes isolates with different pathogenicity ranging from high virulence to avirulence. The biocontrol strain Pseudomonas fluorescens P190r and the arbuscular mycorrhizal (AM) fungus Glomus mosseae BEG12 were inoculated alone or in combination in tomato plants infested by the mildly virulent pathogen R. solani #235. Plant growth as well as root morphometric and topological parameters were evaluated. The infection of R. solani was significantly reduced by all the combinations of the beneficial microorganisms. Root systems of R. solani‐infected plants were weakly developed but highly branched with a herring‐bone pattern, while those inoculated with the AM fungus, alone or in combination with the bacterial strain, were longer and more developed, and displayed a dichotomous pattern. The interactions among these three microorganisms affected plant growth and root architecture of tomato plants.  相似文献   

17.
Yoneyama K  Yoneyama K  Takeuchi Y  Sekimoto H 《Planta》2007,225(4):1031-1038
Plant derived sesquiterpene strigolactones, which have previously been characterized as germination stimulants for root parasitic plants, have recently been identified as the branching factors which induce hyphal branching morphogenesis, a critical step in host recognition by arbuscular mycorrhizal (AM) fungi. We show here that, in red clover plants (Trifolium pratense L.), which is known as a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Mg, Ca) in the culture medium significantly promotes the release of a strigolactone, orobanchol, by the roots of this plant. In red clover plants, the level of orobanchol exudation appeared to be regulated by P availability and was in good agreement with germination stimulation activity of the root exudates. This implies that under P deficiency, plant roots attract not only symbiotic fungi but also root parasitic plants through the release of strigolactones. This is the first report demonstrating that nutrient availability influences both symbiotic and parasitic interactions in the rhizosphere.  相似文献   

18.
Two sorghum cultivars: the Striga-tolerant S-35 and the Striga-sensitive CK60-B were grown with or without arbuscular mycorrhizal (AM) fungi, and with or without phosphorus addition. At 24 and 45 days after sowing (DAS) of sorghum, root exudates were collected and tested for effects on germination of preconditioned Striga hermonthica seeds. Root exudates from AM sorghum plants induced lower germination of S. hermonthica seeds than exudates from non-mycorrhizal sorghum. The magnitude of this effect depended on the cultivar and harvest time. A significantly (88–97%) lower germination of S. hermonthica seeds upon exposure to root exudates from AM S-35 plants was observed at both harvest times whereas for AM inoculated CK60-B plants a significantly (41%) lower germination was observed only at 45 DAS. The number of S. hermonthica seedlings attached to and emerged on both sorghum cultivars were also lower in mycorrhizal than in non-mycorrhizal plants. Again, this reduction was more pronounced with S-35 than with CK60-B plants. There was no effect of phosphorus addition on Striga seed germination, attachment or emergence. We hypothesize that the negative effect of mycorrhizal colonization on Striga germination and on subsequent attachment and emergence is mediated through the production of signaling molecules (strigolactones) for AM fungi and parasitic plants.Key Words: arbuscular mycorrhiza, root exudate, sorghum, striga, strigolactones, germination  相似文献   

19.
Summary No relationship between the degree of VA mycorrhizal infection and total sugar content in root exudates of several plant species of different degree of mycorrhizal susceptibility were observed during the early stages of plant growth. Even more, the non host plants tested showed higher sugar exudation ability, when expressed as the amount exuded per g of root, at these early periods of their growth, than plants susceptible to mycorrhizal infection.Root exudates from host and non host plants influenced similarly the percentage of spore germination and number of secondary spores under controlled conditions.  相似文献   

20.
A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of β-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号