首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemidesmosomes (HDs) are stable anchoring structures that mediate the link between the intermediate filament cytoskeleton and the cell substratum. We investigated the contribution of various segments of the β4 integrin cytoplasmic domain in the formation of HDs in transient transfection studies using immortalized keratinocytes derived from an epidermolysis bullosa patient deficient in β4 expression. We found that the expression of wild-type β4 restored the ability of the β4-deficient cells to form HDs and that distinct domains in the NH2- and COOH-terminal regions of the β4 cytoplasmic domain are required for the localization of HD1/plectin and the bullous pemphigoid antigens 180 (BP180) and 230 (BP230) in these HDs. The tyrosine activation motif located in the connecting segment (CS) of the β4 cytoplasmic domain was dispensable for HD formation, although it may be involved in the efficient localization of BP180. Using the yeast two-hybrid system, we could demonstrate a direct interaction between β4 and BP180 which involves sequences within the COOH-terminal part of the CS and the third fibronectin type III (FNIII) repeat. Immunoprecipitation studies using COS-7 cells transfected with cDNAs for α6 and β4 and a mutant BP180 which lacks the collagenous extracellular domain confirmed the interaction of β4 with BP180. Nevertheless, β4 mutants which contained the BP180-binding region, but lacked sequences required for the localization of HD1/plectin, failed to localize BP180 in HDs. Additional yeast two- hybrid assays indicated that the 85 COOH-terminal residues of β4 can interact with the first NH2-terminal pair of FNIII repeats and the CS, suggesting that the cytoplasmic domain of β4 is folded back upon itself. Unfolding of the cytoplasmic domain may be part of a mechanism by which the interaction of β4 with other hemidesmosomal components, e.g., BP180, is regulated.  相似文献   

2.
Hemidesmosomes (HDs) are multiprotein structures that anchor epithelial cells to the basement membrane. HD components include the α6β4 integrin, plectin, and BPAGs (bullous pemphigoid antigens). HD disassembly in keratinocytes is necessary for cells to migrate and can be induced by EGF through β4 integrin phosphorylation. We have identified a novel phosphorylation site on the β4 integrin: S1424. Preventing phosphorylation by mutating S→A1424 results in increased incorporation of β4 into HDs and resistance to EGF-induced disassembly. In contrast, mutating S→D1424 (mimicking phosphorylation) partially mobilizes β4 from HDs and potentiates the disassembly effects of other phosphorylation sites. In contrast to previously described sites that are phosphorylated upon growth factor stimulation, S1424 already exhibits high constitutive phosphorylation, suggesting additional functions. Constitutive phosphorylation of S1424 is distinctively enriched at the trailing edge of migrating keratinocytes where HDs are disassembled. Although most of this S1424-phosphorylated β4 is found dissociated from HDs, a substantial amount can be associated with HDs near the cell margins, colocalizing with plectin but always excluding BPAGs, suggesting that phospho-S1424 might be a mechanism to dissociate β4 from BPAGs. S1424 phosphorylation is PKC dependent. These data suggest an important role for S1424 in the gradual disassembly of HDs induced by cell retraction.  相似文献   

3.
Bullous pemphigoid antigen 180 (BP180) is a component of hemidesmosomes, i.e., cell-substrate adhesion complexes. To determine the function of specific sequences of BP180 to its incorporation in hemidesmosomes, we have transfected 804G cells with cDNA-constructs encoding wild-type and deletion mutant forms of human BP180. The results show that the cytoplasmic domain of BP180 contains sufficient information for the recruitment of the protein into hemidesmosomes because removal of the extracellular and transmembrane domains does not abolish targeting. Expression of chimeric proteins, which consist of the membrane targeting sequence of K-Ras fused to the cytoplasmic domain of BP180 with increasing internal deletions or lacking the NH2 terminus, indicates that the localization of BP180 in hemidesmosomes is mediated by a segment that spans 265 amino acids. This segment comprises two important regions located within the central part and at the NH2 terminus of the cytoplasmic domain of BP180.

To investigate the effect of the α6β4 integrin on the subcellular distribution of BP180, we have transfected COS-7 cells, which lack α6β4 and BP180, with cDNAs for BP180 as well as for human α6A and β4. We provide evidence that a mutant form of BP180 lacking the collagenous extracellular domain as well as a chimeric protein, which contains the entire cytoplasmic domain of BP180, are colocalized with α6β4. In contrast, when cells were transfected with cDNAs for α6A and mutant forms of β4, either lacking the cytoplasmic COOH-terminal half or carrying phenylalanine substitutions in the tyrosine activation motif of the cytoplasmic domain, the recombinant BP180 molecules were mostly not colocalized with α6β4, but remained diffusely distributed at the cell surface. Moreover, in cells transfected with cDNAs for α6A and a β4/β1 chimera, in which the cytoplasmic domain of β4 was replaced by that of the β1 integrin subunit, BP180 was not colocalized with the α6β4/β1 chimera in focal adhesions, but remained again diffusely distributed. These results indicate that sequences within the cytoplasmic domain of β4 determine the subcellular distribution of BP180.

  相似文献   

4.
Platelet agonists increase the affinity state of integrin αIIbβ3, a prerequisite for fibrinogen binding and platelet aggregation. This process may be triggered by a regulatory molecule(s) that binds to the integrin cytoplasmic tails, causing a structural change in the receptor. β3-Endonexin is a novel 111–amino acid protein that binds selectively to the β3 tail. Since β3-endonexin is present in platelets, we asked whether it can affect αIIbβ3 function. When β3-endonexin was fused to green fluorescent protein (GFP) and transfected into CHO cells, it was found in both the cytoplasm and the nucleus and could be detected on Western blots of cell lysates. PAC1, a fibrinogen-mimetic mAb, was used to monitor αIIbβ3 affinity state in transfected cells by flow cytometry. Cells transfected with GFP and αIIbβ3 bound little or no PAC1. However, those transfected with GFP/β3-endonexin and αIIbβ3 bound PAC1 specifically in an energy-dependent fashion, and they underwent fibrinogen-dependent aggregation. GFP/β3-endonexin did not affect levels of surface expression of αIIbβ3 nor did it modulate the affinity of an αIIbβ3 mutant that is defective in binding to β3-endonexin. Affinity modulation of αIIbβ3 by GFP/β3-endonexin was inhibited by coexpression of either a monomeric β3 cytoplasmic tail chimera or an activated form of H-Ras. These results demonstrate that β3-endonexin can modulate the affinity state of αIIbβ3 in a manner that is structurally specific and subject to metabolic regulation. By analogy, the adhesive function of platelets may be regulated by such protein–protein interactions at the level of the cytoplasmic tails of αIIbβ3.  相似文献   

5.
The interaction of cells with fibronectin generates a series of complex signaling events that serve to regulate several aspects of cell behavior, including growth, differentiation, adhesion, and motility. The formation of a fibronectin matrix is a dynamic, cell-mediated process that involves both ligation of the α5β1 integrin with the Arg-Gly-Asp (RGD) sequence in fibronectin and binding of the amino terminus of fibronectin to cell surface receptors, termed “matrix assembly sites,” which mediate the assembly of soluble fibronectin into insoluble fibrils. Our data demonstrate that the amino-terminal type I repeats of fibronectin bind to the α5β1 integrin and support cell adhesion. Furthermore, the amino terminus of fibronectin modulates actin assembly, focal contact formation, tyrosine kinase activity, and cell migration. Amino-terminal fibronectin fragments and RGD peptides were able to cross-compete for binding to the α5β1 integrin, suggesting that these two domains of fibronectin cannot bind to the α5β1 integrin simultaneously. Cell adhesion to the amino-terminal domain of fibronectin was enhanced by cytochalasin D, suggesting that the ligand specificity of the α5β1 integrin is regulated by the cytoskeleton. These data suggest a new paradigm for integrin-mediated signaling, where distinct regions within one ligand can modulate outside-in signaling through the same integrin.  相似文献   

6.
7.
The cadherins are a family of homophilic adhesion molecules that play a vital role in the formation of cellular junctions and in tissue morphogenesis. Members of the integrin family are also involved in cell to cell adhesion, but bind heterophilically to immunoglobulin superfamily molecules such as intracellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, or mucosal addressin cell adhesion molecule (MadCAM)–1. Recently, an interaction between epithelial (E-) cadherin and the mucosal lymphocyte integrin, αEβ7, has been proposed. Here, we demonstrate that a human E-cadherin–Fc fusion protein binds directly to soluble recombinant αEβ7, and to αEβ7 solubilized from intraepithelial T lymphocytes. Furthermore, intraepithelial lymphocytes or transfected JY′ cells expressing the αEβ7 integrin adhere strongly to purified E-cadherin–Fc coated on plastic, and the adhesion can be inhibited by antibodies to αEβ7 or E-cadherin.

The binding of αEβ7 integrin to cadherins is selective since cell adhesion to P-cadherin–Fc through αEβ7 requires >100-fold more fusion protein than to E-cadherin–Fc. Although the structure of the αE-chain is unique among integrins, the avidity of αEβ7 for E-cadherin can be regulated by divalent cations or phorbol myristate acetate. Cross-linking of the T cell receptor complex on intraepithelial lymphocytes increases the avidity of αEβ7 for E-cadherin, and may provide a mechanism for the adherence and activation of lymphocytes within the epithelium in the presence of specific foreign antigen. Thus, despite its dissimilarity to known integrin ligands, the specific molecular interaction demonstrated here indicates that E-cadherin is a direct counter receptor for the αEβ7 integrin.

  相似文献   

8.
The integrin receptor αMβ2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMβ2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMβ2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside–inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMβ2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMβ2-specific agonist. Taken together, our data suggest that the iC3b–αMβ2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMβ2.  相似文献   

9.
Adsorption and plaque formation of foot-and-mouth disease virus (FMDV) serotype A12 are inhibited by antibodies to the integrin αvβ3 (A. Berinstein et al., J. Virol. 69:2664–2666, 1995). A human cell line, K562, which does not normally express αvβ3 cannot replicate this serotype unless cells are transfected with cDNAs encoding this integrin (K562-αvβ3 cells). In contrast, we found that a tissue culture-propagated FMDV, type O1BFS, was able to replicate in nontransfected K562 cells, and replication was not inhibited by antibodies to the endogenously expressed integrin α5β1. A recent report indicating that cell surface heparan sulfate (HS) was required for efficient infection of type O1 (T. Jackson et al., J. Virol. 70:5282–5287, 1996) led us to examine the role of HS and αvβ3 in FMDV infection. We transfected normal CHO cells, which express HS but not αvβ3, and two HS-deficient CHO cell lines with cDNAs encoding human αvβ3, producing a panel of cells that expressed one or both receptors. In these cells, type A12 replication was dependent on expression of αvβ3, whereas type O1BFS replicated to high titer in normal CHO cells but could not replicate in HS-deficient cells even when they expressed αvβ3. We have also analyzed two genetically engineered variants of type O1Campos, vCRM4, which has greatly reduced virulence in cattle and can bind to heparin-Sepharose columns, and vCRM8, which is highly virulent in cattle and cannot bind to heparin-Sepharose. vCRM4 replicated in wild-type K562 cells and normal, nontransfected CHO (HS+ αvβ3) cells, whereas vCRM8 replicated only in K562 and CHO cells transfected with αvβ3 cDNAs. A similar result was also obtained in assays using a vCRM4 virus with an engineered RGD→KGE mutation. These results indicate that virulent FMDV utilizes the αvβ3 integrin as a primary receptor for infection and that adaptation of type O1 virus to cell culture results in the ability of the virus to utilize HS as a receptor and a concomitant loss of virulence.  相似文献   

10.
The αvβ3 integrin plays a fundamental role during the angiogenesis process by inhibiting endothelial cell apoptosis. However, the mechanism of inhibition is unknown. In this report, we show that integrin-mediated cell survival involves regulation of nuclear factor-kappa B (NF-κB) activity. Different extracellular matrix molecules were able to protect rat aorta- derived endothelial cells from apoptosis induced by serum withdrawal. Osteopontin and β3 integrin ligation rapidly increased NF-κB activity as measured by gel shift and reporter activity. The p65 and p50 subunits were present in the shifted complex. In contrast, collagen type I (a β1-integrin ligand) did not induce NF-κB activity. The αvβ3 integrin was most important for osteopontin-mediated NF-κB induction and survival, since adding a neutralizing anti-β3 integrin antibody blocked NF-κB activity and induced endothelial cell death when cells were plated on osteopontin. NF-κB was required for osteopontin- and vitronectin-induced survival since inhibition of NF-κB activity with nonphosphorylatable IκB completely blocked the protective effect of osteopontin and vitronectin. In contrast, NF-κB was not required for fibronectin, laminin, and collagen type I–induced survival. Activation of NF-κB by osteopontin depended on the small GTP-binding protein Ras and the tyrosine kinase Src, since NF-κB reporter activity was inhibited by Ras and Src dominant-negative mutants. In contrast, inhibition of MEK and PI3-kinase did not affect osteopontin-induced NF-κB activation. These studies identify NF-κB as an important signaling molecule in αvβ3 integrin-mediated endothelial cell survival.  相似文献   

11.
The integrin α4β7 plays an important role in lymphocyte homing to mucosal lymphoid tissues and has been shown to define a subpopulation of memory T cells capable of homing to intestinal sites. Here we have used a well-characterized intestinal virus, murine rotavirus, to investigate whether memory/effector function for an intestinal pathogen is associated with α4β7 expression. α4β7hi memory phenotype (CD44hi), α4β7 memory phenotype, and presumptively naive (CD44lo) CD8+ T lymphocytes from rotavirus-infected mice were sorted and transferred into Rag-2 (T- and B-cell-deficient) recipients that were chronically infected with murine rotavirus. α4β7hi memory phenotype CD8+ cells were highly efficient at clearing rotavirus infection, α4β7 memory cells were inefficient or ineffective, depending on the cell numbers transferred, and CD44lo cells were completely unable to clear chronic rotavirus infection. These data demonstrate that functional memory for rotavirus resides primarily in memory phenotype cells that display the mucosal homing receptor α4β7.  相似文献   

12.
The LAR family protein tyrosine phosphatases (PTPs), including LAR, PTPδ, and PTPς, are transmembrane proteins composed of a cell adhesion molecule-like ectodomain and two cytoplasmic catalytic domains: active D1 and inactive D2. We performed a yeast two-hybrid screen with the first catalytic domain of PTPς (PTPς-D1) as bait to identify interacting regulatory proteins. Using this screen, we identified the second catalytic domain of PTPδ (PTPδ-D2) as an interactor of PTPς-D1. Both yeast two-hybrid binding assays and coprecipitation from mammalian cells revealed strong binding between PTPς-D1 and PTPδ-D2, an association which required the presence of the wedge sequence in PTPς-D1, a sequence recently shown to mediate D1-D1 homodimerization in the phosphatase RPTPα. This interaction was not reciprocal, as PTPδ-D1 did not bind PTPς-D2. Addition of a glutathione S-transferase (GST)–PTPδ-D2 fusion protein (but not GST alone) to GST–PTPς-D1 led to ~50% inhibition of the catalytic activity of PTPς-D1, as determined by an in vitro phosphatase assay against p-nitrophenylphosphate. A similar inhibition of PTPς-D1 activity was obtained with coimmunoprecipitated PTPδ-D2. Interestingly, the second catalytic domains of LAR (LAR-D2) and PTPς (PTPς-D2), very similar in sequence to PTPδ-D2, bound poorly to PTPς-D1. PTPδ-D1 and LAR-D1 were also able to bind PTPδ-D2, but more weakly than PTPς-D1, with a binding hierarchy of PTPς-D1>>PTPδ-D1>LAR-D1. These results suggest that association between PTPς-D1 and PTPδ-D2, possibly via receptor heterodimerization, provides a negative regulatory function and that the second catalytic domains of this and likely other receptor PTPs, which are often inactive, may function instead to regulate the activity of the first catalytic domains.  相似文献   

13.
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2).  相似文献   

14.
The interaction of the α5β1 integrin and its ligand, fibronectin (FN), plays a crucial role in the adhesion of cells to the extracellular matrix. An important intrinsic property of the α5β1/FN interaction is the dynamic response of the complex to a pulling force. We have carried out atomic force microscopy measurements of the interaction between α5β1 and a fibronectin fragment derived from the seventh through tenth type III repeats of FN (i.e., FN7-10) containing both the arg-gly-asp (RGD) sequence and the synergy site. Direct force measurements obtained from an experimental system consisting of an α5β1 expressing K562 cell attached to the atomic force microscopy cantilever and FN7-10 adsorbed on a substrate were used to determine the dynamic response of the α5β1/FN7-10 complex to a pulling force. The experiments were carried out over a three-orders-of-magnitude change in loading rate and under conditions that allowed for detection of individual α5β1/FN7-10 interactions. The dynamic rupture force of the α5β1/FN7-10 complex revealed two regimes of loading: a fast loading regime (>10,000 pN/s) and a slow loading regime (<10,000 pN/s) that characterize the inner and outer activation barriers of the complex, respectively. Activation by TS2/16 antibody increased both the frequency of adhesion and elevated the rupture force of the α5β1/wild type FN7-10 complex to higher values in the slow loading regime. In experiments carried out with a FN7-10 RGD deleted mutant, the force measurements revealed that both inner and outer activation barriers were suppressed by the mutation. Mutations to the synergy site of FN, however, suppressed only the outer barrier activation of the complex. For both the RGD and synergy deletions, the frequency of adhesion was less than that of the wild type FN7-10, but was increased by integrin activation. The rupture force of these mutants was only slightly less than that of the wild type, and was not increased by activation. These results suggest that integrin activation involved a cooperative interaction with both the RGD and synergy sites.  相似文献   

15.
Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5β1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1β, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5β1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1β, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5β1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5β1 as a promising target for treating vascular inflammation in COVID-19.  相似文献   

16.
A regulated order of adhesion events directs leukocytes from the vascular compartment into injured tissues in response to inflammatory stimuli. We show that on human T cells, the interaction of the β2 integrin leucocyte function–associated antigen-1 (LFA-1) with its ligand intercellular adhesion molecule-1 (ICAM-1) will decrease adhesion mediated by α4β1 and, to a lesser extent, α5β1. Similar inhibition is also seen when T cells are exposed to mAb 24, which stabilizes LFA-1 in an active state after triggering integrin function through divalent cation Mg2+, PdBu, or T cell receptor/ CD3 complex (TCR/CD3) cross-linking. Such cross talk decreases α4β1 integrin–mediated binding of T cells to fibronectin and vascular cell adhesion molecule-1 (VCAM-1). In contrast, ligand occupancy or prolonged activation of β1 integrin has no effect on LFA-1 adhesion to ICAM-1. We also show that T cell migration across fibronectin, unlike adhesion, is mediated solely by α5β1, and is increased when the α4β1-mediated component of fibronectin adhesion is decreased either by cross talk or the use of α4-blocking mAb. The ability of mAb 24 Fab′ fragments to induce cross talk without cross-linking LFA-1 suggests signal transduction through the active integrin. These data provide the first direct evidence for cross talk between LFA-1 and β1 integrins on T cells. Together, these findings imply that activation of LFA-1 on the extravasating T cell will decrease the binding to VCAM-1 while enhancing the subsequent migration on fibronectin. This sequence of events provides a further level of complexity to the coordination of T cell integrins, whose sequential but overlapping roles are essential for transmigration.  相似文献   

17.
Functional studies on the α6β4 integrin have focused primarily on its role in the organization of hemidesmosomes, stable adhesive structures that associate with the intermediate filament cytoskeleton. In this study, we examined the function of the α6β4 integrin in clone A cells, a colon carcinoma cell line that expresses α6β4 but no α6β1 integrin and exhibits dynamic adhesion and motility on laminin-1. Time-lapse videomicroscopy of clone A cells on laminin-1 revealed that their migration is characterized by filopodial extension and stabilization followed by lamellae that extend in the direction of stabilized filopodia. A function-blocking mAb specific for the α6β4 integrin inhibited clone A migration on laminin-1. This mAb also inhibited filopodial formation and stabilization and lamella formation. Indirect immunofluorescence microscopy revealed that the α6β4 integrin is localized as discrete clusters in filopodia, lamellae, and retraction fibers. Although β1 integrins were also localized in the same structures, a spatial separation of these two integrin populations was evident. In filopodia and lamellae, a striking colocalization of the α6β4 integrin and F-actin was seen. An association between α6β4 and F-actin is supported by the fact that α6β4 integrin and actin were released from clone A cells by treatment with the F-actin– severing protein gelsolin and that α6β4 immunostaining at the marginal edges of clone A cells on laminin-1 was resistant to solubilization with Triton X-100. Cytokeratins were not observed in filopodia and lamellipodia. Moreover, α6β4 was extracted from these marginal edges with a Tween-40/deoxycholate buffer that solubilizes the actin cytoskeleton but not cytokeratins. Three other carcinoma cell lines (MIP-101, CCL-228, and MDA-MB-231) exhibited α6β4 colocalized with actin in filopodia and lamellae. Formation of lamellae in these cells was inhibited with an α6-specific antibody. Together, these results indicate that the α6β4 integrin functions in carcinoma migration on laminin-1 through its ability to promote the formation and stabilization of actin-containing motility structures.  相似文献   

18.
Chondroadherin (the 36-kD protein) is a leucine-rich, cartilage matrix protein known to mediate adhesion of isolated chondrocytes. In the present study we investigated cell surface proteins involved in the interaction of cells with chondroadherin in cell adhesion and by affinity purification. Adhesion of bovine articular chondrocytes to chondroadherin-coated dishes was dependent on Mg2+ or Mn2+ but not Ca2+. Adhesion was partially inhibited by an antibody recognizing β1 integrin subunit. Chondroadherin-binding proteins from chondrocyte lysates were affinity purified on chondroadherin-Sepharose. The β1 integrin antibody immunoprecipitated two proteins with molecular mass ~110 and 140 kD (nonreduced) from the EDTA-eluted material. These results indicate that a β1 integrin on chondrocytes interacts with chondroadherin. To identify the α integrin subunit(s) involved in interaction of cells with the protein, we affinity purified chondroadherin-binding membrane proteins from human fibroblasts. Immunoprecipitation of the EDTA-eluted material from the affinity column identified α2β1 as a chondroadherin-binding integrin. These results are in agreement with cell adhesion experiments where antibodies against the integrin subunit α2 partially inhibited adhesion of human fibroblast and human chondrocytes to chondroadherin. Since α2β1 also is a receptor for collagen type II, we tested the ability of different antibodies against the α2 subunit to inhibit adhesion of T47D cells to collagen type II and chondroadherin. The results suggested that adhesion to collagen type II and chondroadherin involves similar or nearby sites on the α2β1 integrin. Although α2β1 is a receptor for both collagen type II and chondroadherin, only adhesion of cells to collagen type II was found to mediate spreading.  相似文献   

19.
The carboxyl-terminal domain of thrombospondin-1 enhances the migration and proliferation of smooth muscle cells. Integrin-associated protein (IAP or CD47) is a receptor for the thrombospondin-1 carboxyl-terminal cell-binding domain and binds the agonist peptide 4N1K (kRFYVVMWKk) from this domain. 4N1K peptide stimulates chemotaxis of both human and rat aortic smooth muscle cells on gelatin-coated filters. The migration on gelatin is specifically blocked by monoclonal antibodies against IAP and a β1 integrin, rather than αvβ3 as found previously for 4N1K-stimulated chemotaxis of endothelial cells on gelatin. Both human and rat smooth muscle cells displayed a weak migratory response to soluble type I collagen; however, the presence of 4N1K peptide or intact thrombospondin-1 provoked a synergistic chemotactic response that was partially blocked by antibodies to α2 and β1 integrin subunits and to IAP. A combination of antiα2 and IAP monoclonal antibodies completely blocked chemotaxis. RGD peptide and antiαvβ3 mAb were without effect. 4N1K and thrombospondin-1 did not augment the chemotactic response of smooth muscle cells to fibronectin, vitronectin, or collagenase-digested type I collagen. Complex formation between α2β1 and IAP was detected by the coimmunoprecipitation of both α2 and β1 integrin subunits with IAP. These data suggest that IAP can associate with α2β1 integrin and modulate its function.  相似文献   

20.
Laminin 5 Binds the NC-1 Domain of Type VII Collagen   总被引:15,自引:0,他引:15       下载免费PDF全文
Mutational analyses of genes that encode components of the anchoring complex underlying the basolateral surface of external epithelia indicate that this structure is the major element providing for resistance to external friction. Ultrastructurally, laminin 5 (α3β3γ2; a component of the anchoring filament) appears as a thin filament bridging the hemidesmosome with the anchoring fibrils. Laminin 5 binds the cell surface through hemidesmosomal integrin α6β4. However, the interaction of laminin 5 with the anchoring fibril (type VII collagen) has not been elucidated. In this study we demonstrate that monomeric laminin 5 binds the NH2-terminal NC-1 domain of type VII collagen. The binding is dependent upon the native conformation of both laminin 5 and type VII collagen NC-1. Laminin 6 (α3β1γ1) has no detectable affinity for type VII collagen NC-1, indicating that the binding is mediated by the β3 and/or γ2 chains of laminin 5. Approximately half of the laminin 5 solubilized from human amnion or skin is covalently complexed with laminins 6 or 7 (α3β2γ1). The adduction occurs between the NH2 terminus of laminin 5 and the branch point of the short arms of laminins 6 or 7. The results are consistent with the presumed orientation of laminin 5, having the COOH-terminal G domain apposed to the hemidesmosomal integrin, and the NH2-terminal domains within the lamina densa. The results also support a model predicting that monomeric laminin 5 constitutes the anchoring filaments and bridges integrin α6β4 with type VII collagen, and the laminin 5–6/7 complexes are present within the interhemidesmosomal spaces bound at least by integrin α3β1 where they may mediate basement membrane assembly or stability, but contribute less significantly to epithelial friction resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号