首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of gangliosides and neutral glycosphingolipids (GSLs) in the lymph nodes of mice lacking the gene for the tumour necrosis factor-alpha receptor p55 (TNFR1) has been investigated. GSL expression in the tissues of mice homozygous (TNFR1-/-) or heterozygous (TNFR1+/-) for the gene deletion was analysed by flow cytometry and high-performance thin-layer chromatography (HPTLC) followed by immunostaining with specific antibodies. HPTLC immunostaining revealed that lymph nodes from TNFR1-/- mice had reduced expression of ganglioside GM1b and GalNAc-GM1b, neolacto-series gangliosides, as well as the globo- (Gb3, Gb4 and Gb5) and ganglio-series (Gg3 and Gg4) neutral GSLs. Flow cytometry of freshly isolated lymph node cells showed no significant differences in GSL expression, except for the GalNAc-GM1b ganglioside, which was less abundant on T lymphocytes from TNFR1-/- lymph nodes. In TNFR1-/- mice, GalNAc-GM1b+/CD4+ T cells were twofold less abundant (3.8% vs 7.6% in the control mice), whereas GalNAc-GM1b+/CD8+ T cells were fourfold less abundant (5.0% vs 20.2% in the control mice). This study provides in vivo evidence that TNF signalling via the TNFR1 is important for the activation of GM1b-type ganglioside biosynthetic pathway in CD8 T lymphocytes, suggesting its possible role in the effector T lymphocyte function.  相似文献   

2.
The gangliosides GM1b, GalNAc-GM1b and GD1α are typical compounds of concanavalin A stimulated splenic T lymphoblasts of CBA/J inbred mice. Their structural characterization has been described in previous studies. The intention of this work was the comparative TLC immunostaining analysis of the glycosphingolipid composition of lectin stimulated splenic T lymphoblasts obtained from six genetically different inbred mouse strains. The strains examined were AKR, BALB/c, C57BL/6, CBA/J, DBA/2 and WHT/Ht, which are commonly used for biochemical and immunological studies. The neutral glycosphingolipid GgOse4Cer, the precursor for GM1b-type gangliosides, was expressed by all six strains investigated. AKR, C57BL/6 and DBA/2 showed high and BALB/c, CBA/J and WHT/Ht diminished expression in T lymphoblasts, based on single cell calculation. The gangliosides GM1b and GalNAc-GM1b, elongation products of GgOse4Cer, displayed strain-specific differences in their intensities, which were found to correlate with the intensities of GgOse4Cer expression of the same strains. Concerning sialic acid substitution of gangliosides, GM1b and GalNAc-GM1b predominantly carry N-acetylneuraminic acid, whereas choleragenoid receptors GM1a and Gal-GalNAc-GM1b, which are also expressed by all six strains, are characterized by dominance of N-glycolylneuraminic acid. Two highly polar gangliosides, designated with X and Y, which have not been previously recognized in murine lymphoid tissue, were detected by positive anti-GalNAc-GM1b antibody and choleragenoid binding, respectively. Both gangliosides were restricted to AKR, DBA/2 and C57BL/6 mice. The other three strains BALB/c, CBA/J and WHT/Ht are lacking these structures. In summary, the GM1b-type pathway is quite active in all six strains analysed in this study. Strain-specific genetic variations in T lymphoblast gangliosides were observed with the occurrence of gangliosides X and Y. This study and data from other groups strongly indicate for GM1b-type gangliosides a functional association with T cell activation and leukocyte mediated reactions. Abbreviations: ConA, concanavalin A; GSL(s), glycosphingolipid(s); HPTLC, high-performance thin-layer chromatography; NeuAc, N-acetylneuraminic acid; NeuGc, N-glycolylneuraminic acid. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations (1977) [48] and the ganglioside nomenclature system of Svennerholm [49] for GM1a-type gangliosides. Glucosylceramide or GlcCer, Glcβ1-1Cer; lactosylceramide or LacCer, Galβ1-4Glcβ1-1Cer; gangliotriaosylceramide or GgOse3Cer or Gg3, GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliotetraosylceramide or GgOse4Cer or Gg4, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliopentaosylceramide or GgOse5Cer, GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer; gangliohexaosylceramide or GgOse6Cer, Galβ1-3GalNAcβ1-4Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1Cer. GM3, II3NeuAc-LacCer; GM1 or GM1a, II3NeuAc-GgOse4Cer; GM1b, IV3NeuAc-GgOse4Cer; GalNAc-GM1b, IV3NeuAc-GgOse5Cer; GD1a, IV3NeuAc, II3NeuAc-GgOse4Cer; GD1b, II3(NeuAc)2-GgOse4Cer; GD1c, IV3(NeuAc)2-GgOse4Cer; GD1α, IV3NeuAc, III6NeuAc-GgOse4Cer. Only NeuAc-substituted gangliosides are presented in this list of abbreviations This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Gangliosides of murine T lymphocyte subpopulations   总被引:3,自引:0,他引:3  
Gangliosides from murine T lymphoblasts were analyzed by high-performance thin-layer chromatography followed by in situ neuraminidase treatment and immunostaining of the resulting asialogangliosides and compared with those from thymocytes and cloned T lymphocytes with defined functions. The ganglioside IVNeuGc/Ac-GgOse5Cer (GalNAc-GM1b), a marker for T lymphoblasts [Müthing, J., Egge, H., Kniep, B., & Mühlradt, P. F. (1987) Eur. J. Biochem. 163, 407-416], was found only in small amounts as the N-acetylated species in gangliosides from thymocytes and a cytolytic T cell clone. Two helper clones expressed this ganglioside like T blasts. The structures of the two major disialogangliosides from T blasts, IVNeuAc,IIINeuAc-GgOse4Cer (GD1 alpha type) with C24:0/24:1 and C16:0 fatty acids, were elucidated by neuraminidase treatment and immunostaining and by fast atom bombardment mass spectrometry. Gangliosides of this type were detected in thymocytes only in minor amounts, whereas GM1b-type gangliosides prevailed in cells from this organ. Analysis of the T lymphoblast gangliosides from six genetically unrelated mouse strains showed that terminally sialylated GgOse4Cer (GM1b), IVNeuAc-GgOse5Cer (GalNAc-GM1b), and IVNeuAc,IIINeuAc-GgOse4Cer (GD1 alpha) were conserved structures in all strains examined. We conclude that maturation or stimulation of T cells may be correlated with elongation of a common GM1b-type precursor structure resulting in GalNAc-GM1b or GD1 alpha-type gangliosides.  相似文献   

4.
Cell lines expressing varying levels of ganglioside GM3 at the cell surface show different degrees of adhesion and spreading on solid phase coated with such glycosphingolipids (GSLs) as Gg3 (GalNAc beta 1----4Gal beta 1----4Glc beta 1----1Cer), LacCer (Gal beta 1----4Glc beta 1----1Cer), or Gb4 (GalNAc beta 1----3Gal alpha 1----4Gal beta 1----4Glc beta 1----1Cer) (where Cer is ceramide), which may have structures complementary to GM3, but not on solid phase coated with various other GSLs. The degree of cell adhesion and spreading on Gg3 was correlated with the degree of cell-surface GM3 expression, as defined by reactivity with anti-GM3 monoclonal antibody (mAb) DH2. Only cells with high GM3 expression adhered on solid phase coated with LacCer or Gb4. Adhesion of GM3-expressing cells on Gg3-, LacCer-, and Gb4-coated solid phase is based on interaction of GM3 with Gg3 and, to a lesser extent, with LacCer and Gb4, as demonstrated by: (i) the interaction of the GM3 liposome with solid phase coated with Gg3, LacCer, and Gb4, respectively; (ii) the abolition of cell adhesion on each GSL-coated solid phase by treatment of cells with mAb DH2 or sialidase; and (iii) the inhibition of cell adhesion by treatment of GSL-coated solid phase with mAb specific to each GSL. Sialosyllactosyl-lysyllysine conjugate was bound to Gg3 adsorbed on a C18 silica gel column in the presence of bivalent cation, suggesting that the carbohydrate moiety of GM3 is involved in GM3-Gg3 interaction. Not only the adhesion and spreading of GM3-expressing cells, but also their cell motility was greatly enhanced on Gg3-coated solid phase, as determined by Transwell assay and phagokinetic track assay on a gold sol-coated surface. Spreading and motility of GM3-expressing cells on Gg3-coated solid phase were both inhibited by treatment of cells with mAb DH2 or sialidase. These results provide evidence that not only cell adhesion, but also spreading and motility in these cell lines are controlled by complementary GSL-GSL interaction.  相似文献   

5.
Glycolipid compositions of three mouse myeloid leukemia cell clones, two that are sensitive to differentiation inducers (M1-T22 and M1-S1) and one that is differentiation-resistant (M1-R1), have been compared. The T22 and S1 clones contained glucosylceramide (GlcCer), lactosylceramide (LacCer) and gangliotriaosylceramide (Gg3Cer) as the major neutral glycolipids. The differentiation resistant clone, R1, was characterized by the appearance of globotriaosylceramide (Gb3Cer) and a decrease of Gg3Cer. There was a distinct difference in the ganglioside profile between the differentiation-inducible and -resistant clones: T22 and S1 cells contained no detectable amounts of ganglioside, whereas six different gangliosides were detected in the R1 clone. These gangliosides were isolated and identified as GM3, GM2, GM1a, GD1a, GM1b, and a unique disialoganglioside, GD1 alpha, having the following structure: (formula; see text) Based on these comparative studies, the relationship between the glycolipid composition and the differentiation potential of leukemia cells is discussed.  相似文献   

6.
1. Six neutral GSL fractions were purified from porcine erythrocyte membranes. 2. They were identified to be LacCer (14% of total neutral GSLs), 2-hydroxy acid-rich and -poor Gb3Cer (3 and 7%, respectively) and Gb4Cer (71%) by means of NMR spectrometry. 3. Monohexosylceramides (5%) were composed of GlcCer and GalCer with near amount. 4. All these GSL classes contained a high concentration (more than 20% of total acids in each class) of 2-hydroxy fatty acids. 5. GalCer and GlcCer contained considerable amounts of C16- and C18-acids, and of C18-phytosphingosine, whereas C24-acids and C18-sphingosine were predominant in the other GSLs. 6. A minor GSL fraction (less than 1% of total neutral GSLs) which migrated more slowly than Gb5Cer on a thin layer plate and composed of several GSL components contained L-fucose.  相似文献   

7.
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and-?4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.  相似文献   

8.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

9.
The effect of temperature on the behaviour of four different gangliosides (GM3, GM1, GD1a and GT1b), sulphatide, ceramide (Cer) and three neutral glycosphingolipids (GalCer, Gg3Cer, Gg4Cer) was investigated in monolayers at the air-NaCl (145 mM) interface. GM1, GD1a and GT1b are liquid-expanded in the range of temperatures studied (5-65 degrees C). GM3, sulphatide, Cer and neutral glycosphingolipids show isothermal liquid-expanded----liquid-condensed transitions. The collapse pressure of ganglioside monolayers decreases with temperature, whereas neutral glycosphingolipids may show some maximum values at particular temperatures. The reduction of the molecular area of liquid-expanded glycosphingolipids under compression occurs with a favorable positive entropy change and an unfavorable negative enthalpy. By contrast, the compression of interfaces with a two-dimensional phase transition occurs with an unfavorable entropy but a favorable enthalpy change. From the temperature dependence of the surface pressure at which the two-dimensional phase transition takes place, a minimal temperature above which the isotherm becomes totally liquid-expanded can be obtained. For the different glycosphingolipids this temperature decreases in the order Cer greater than GalCer greater than sulphatide greater than Gg3Cer greater than Gg4Cer greater than GM3 greater than GM1 greater than GD1a greater than GT1b. This sequence is similar to that found for the calorimetrically determined transition temperatures (cf. Maggio, B., Ariga, T., Sturtevant, J.M. and Yu, R.K. (1985) Biochemistry 24, 1084-1092).  相似文献   

10.
11.
Vascular damage caused by Shiga toxin (Stx)-producing Escherichia coli is largely mediated by Stxs, which in particular, injure microvascular endothelial cells in the kidneys and brain. The majority of Stxs preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) and, to a lesser extent, to globotetraosylceramide (Gb4Cer). As clustering of receptor GSLs in lipid rafts is a functional requirement for Stxs, we analyzed the distribution of Gb3Cer and Gb4Cer to membrane microdomains of human brain microvascular endothelial cells (HBMECs) and macrovascular EA.hy 926 endothelial cells by means of anti-Gb3Cer and anti-Gb4Cer antibodies. TLC immunostaining coupled with infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry revealed structural details of various lipoforms of Stx receptors and demonstrated their major distribution in detergent-resistant membranes (DRMs) compared with nonDRM fractions of HBMECs and EA.hy 926 cells. A significant preferential partition of different receptor lipoforms carrying C24:0/C24:1 or C16:0 fatty acid and sphingosine to DRMs was not detected in either cell type. Methyl-β-cyclodextrin (MβCD)-mediated cholesterol depletion resulted in only partial destruction of lipid rafts, accompanied by minor loss of GSLs in HBMECs. In contrast, almost entire disintegration of lipid rafts accompanied by roughly complete loss of GSLs was detected in EA.hy 926 cells after removal of cholesterol, indicating more stable microdomains in HBMECs. Our findings provide first evidence for differently stable microdomains in human endothelial cells from different vascular beds and should serve as the basis for further exploring the functional role of lipid raft-associated Stx receptors in different cell types.  相似文献   

12.
In this study the comparative TLC immunostaining investigation of neutral GSLs and gangliosides from human skeletal and heart muscle is described. A panel of specific polyclonal and monoclonal antibodies as well as the GM1-specific choleragenoid were used for the overlay assays, combined with preceding neuraminidase treatment of gangliosides on TLC plates. This approach proved homologies but also quantitative and qualitative differences in the expression of ganglio-, globo- and neolacto-series neutral GSLs and gangliosides in these two types of striated muscle tissue within the same species. The main neutral GSL in skeletal muscle was LacCer, followed by GbOse3Cer, GbOse4Cer, nLcOse4Cer and monohexosylceramide, whereas in heart muscle GbOse3Cer and GbOse4Cer were the predominant neutral GSLs beside small quantities of LacCer, nLcOse4Cer and monohexosylceramide. No ganglio-series neutral GSLs and no Forssman GSL were found in either muscle tissue. GM3(Neu5Ac) was the major ganglioside, comprising almost 70% in skeletal and about 50% in cardiac muscle total gangliosides. GM2 was found in skeletal muscle only, while GD3 and GM1b-type gangliosides (GM1b and GD1) were undetectable in both tissues. GM1a-core gangliosides (GM1, GD1a, GD1b and GT1b) showed somewhat quantitative differences in each muscle; lactosamine-containing IV3Neu5Ac-nLcOse4Cer was detected in both specimens. Neutral GSLs were identified in TLC runs corresponding to e.g. 0.1 g muscle wet weight (GbOse3Cer, GbOse4Cer), and gangliosides GM3 and GM2 were elucidated in runs which corresponded to 0.2 g muscle tissue. Only 0.02 g and 0.004 g wet weight aliquots were necessary for unequivocal identification of neolacto-type and GM1-core gangliosides, respectively. Muscle is known for the lowest GSL concentration from all vertebrate tissues studied so far. Using the overlay technique, reliable GSL composition could be revealed, even from small muscle probes on a sub-orcinol and sub-resorcinol detection level. Abbreviations: ATCC, American Type Culture Collection; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography; HPTLC, high performance thin layer chromatography; Neu5Ac, N-acetylneuraminic acid; Neu5Gc, N-glycolylneuraminic acid [78]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [79] and the ganglioside nomenclature system of Svennerholm [80]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gal1-4Gal1-4Glc1-1Cer; globoside or globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; Fo or Forssman GSL, GalNAc1-3GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; paragloboside or lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1 or GM1a, II3Neu5Ac-GgOse4Cer; GM1b, IV3Neu5Ac-GgOse4Cer; GD3, II3(Neu5Ac)2-LacCer; GD1a, IV3Neu5Ac,II3Neu5Ac-GgOse4Cer; GD1b, (II3Neu5Ac)2-GgOse4Cer; GD1, IV3Neu5Ac,III6Neu5Ac-GgOse4Cer; GT1b, IV3Neu5Ac,II3(Neu5Ac)2-GgOse4Cer; GQ1b, IV3(Neu5Ac)2, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

13.
Comparative studies of the individual properties and intermolecular organization of asialo-GM1 (Gg4Cer) and globoside (Gb4Cer) were made employing lipid monolayers and high-sensitivity differential scanning calorimetry. The surface pressure-area isotherm of Gb4Cer is more expanded than that of Gg4Cer. This results in greater molecular areas and compressibilities, and lower intermolecular interaction energies, for Gb4Cer compared to Gg4Cer at all surface pressures. This looser intermolecular packing may be responsible for a lower transition temperature (40.5 degrees C) and enthalpy of transition (delta Hcal) (2.0 kcal mol-1) found for the phase transition of Gb4Cer compared to Gg4Cer (54.0 degrees C and 4.2 kcal mol-1). The surface potential per molecule and resultant molecular dipole moment vector values are greater for Gb4Cer than for Gg4Cer at comparable values of surface pressure and molecular area. All these results reflect the existence of a rigid L-shape in the oligosaccharide chain of Gb4Cer that prevents a close intermolecular packing compared to the straight orientation of the polar head group of Gg4Cer. Significant movements of the oligosaccharide chain may occur depending on the lateral surface pressure. At low surface pressures the orientation of the oligosaccharide chain of Gg4Cer may be displaced an angle of up to about 40 degrees compared to the perpendicular position adopted at high surface pressures. In agreement with an enhanced liquid character of the interface, the oligosaccharide chain of Gb4Cer exhibits a greater freedom of movement and the displacement from the position perpendicular to the interface can reach to about 65 degrees.  相似文献   

14.
The disialogangliosides of WHT/Ht mouse thymomas, which were obtained by subcutaneous transplantation of a thymoma that developed spontaneously in a WHT/Ht mouse, were purified and characterized. From the results of sugar-composition analysis, a permethylation study, enzymatic hydrolysis followed by TLC-immunostaining, negative-ion fast atom bombardment mass spectrometry (FAB/MS), and 1H-NMR spectroscopy, the structure of one of the five purified disialogangliosides was determined to be IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer. The other 4 disialogangliosides were tentatively characterized on the basis of sialidase treatment followed by TLC-immunostaining with cholera toxin B subunit and anti-Gg4Cer antibody to be IV alpha(NeuAc alpha-NeuGc)-Gg4Cer, IV alpha(NeuGc alpha-NeuAc)-Gg4Cer, IV alpha NeuAc,II3 alpha NeuAc-Gg4Cer, and IV alpha NeuGc,II3 alpha NeuGc-Gg4Cer. In addition, another component exhibiting one spot on TLC was a mixture of IV alpha NeuGc,II3 alpha NeuAc-Gg4Cer and IV alpha NeuAc,II3 alpha NeuGc-Gg4Cer. Then the occurrence of these gangliosides in WHT/Ht mouse thymocytes was examined. As one of two major disialogangliosides, the thymocytes contained IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer, which was characterized with a mass spectrum and mass chromatograms obtained by micro high-performance liquid chromatography-FAB/MS. The other major disialoganglioside was tentatively characterized to be II3 alpha-(NeuGc alpha-NeuGc)-Gg4Cer by sialidase treatment followed by TLC-immunostaining. A sialidase-susceptible monosialoganglioside, IV3 alpha NeuGc-Gg4Cer [GM1b(NeuGc)], had been reported to be characteristic of mouse immune tissues [Nakamura, K. et al. (1988) J. Biochem, 103, 201-208]. Taken together, the results suggest that the pathway from Gg4Cer to IV3 alpha(NeuGc alpha 2-8NeuGc)-Gg4Cer through GM1b(NeuGc) is quite active in mouse immune tissues.  相似文献   

15.
Glycosphingolipids (GSLs) represent an important class of immunogens and receptors. Although cell surface antigens and receptors of endothelial cells (ECs) have been the subject of extensive biochemical investigation, no information is available about their GSLs. We report here the characterization by chromatographic and immunological techniques of GSLs of cultured human umbilical vein ECs and, for comparison, umbilical vein smooth muscle cells (SMCs). The most abundant neutral GSLs of both cell types were lactosylceramide, Gb3, and Gb4, and both cells contained complex lacto and globo series compounds. Immunostaining revealed that ECs, but not SMCs, contained long chain GSLs bearing a type 2 blood group H determinant. ECs also contained more long chain GSLs bearing an unsubstituted terminal lactosamine structure than SMCs. Labeling with galactose oxidase/NaB3H4 demonstrated that neutral glycolipids that contained three or more sugars were accessible on the cell surface. The major gangliosides of both cell types were GM3 and IV3NeuAcnLc4. Immunostaining following neuraminidase treatment revealed that most of the long chain gangliosides in both types of cells contained a lacto core structure, and that ganglio series compounds were more abundant in SMCs than ECs. Gangliosides that contain a polyfucosyllactosamine core and a globo core were also present in both cell types. These results demonstrate that endothelial and smooth muscle cells contain a large diversity of GSL structures, and provide the basis for investigation of the role of these GSLs as cell surface antigens and receptors for blood components.  相似文献   

16.
A new monoclonal antibody (TU-1) directed against the Galα1-4Galβ1-4Glc residue of the Gb3Cer/CD77 antigen was prepared by the hybridoma technique following immunization of mice with an emulsion composed of monophosphoryl lipid A, trehalose dimycolate, and Gb3Cer isolated from porcine erythrocytes. TU-1 showed reactivity towards Gb3Cer and lyso-Gb3Cer (Galα1-4Galβ1-4Glcβ1-1′Sph), although the reactivity towards lyso-Gb3Cer was about 10-fold lower than that to Gb3Cer. But it did not react with other structurally-related glycolipids, such as LacCer (Galβ1-4Glcβ1-1′Cer), Gg3Cer, Gg4Cer, Gb4Cer (GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1′Cer), galactosylparagloboside (Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1′Cer), sulfatide (HSO3-3Galβ1-1′Cer), other gangliosides (GM3, GM2, GM1a, GD1a and GT1b), or P1 antigen (Galα1-4Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1′Cer) among neutral glycolipids prepared from P1 phenotype red blood cells. Furthermore, TU-1 reacted with viable lymphoma cells, such as human Burkitt lymphoma cell line, Daudi, and Epstein-Barr virus (EBV)-transformed B cells by the immunofluorescence method, and also with germinal centre B cells in human tonsil and vessel endothelial cells in human thymus histochemically. These results indicate that TU-1 is a monoclonal antibody directed against Gb3Cer/CD77 antigen and can be utilized as a diagnostic reagent for Burkitt's lymphoma and also for detection of the blood group Pk antigen in glycolipid extracts of erythrocytes. Abbreviations: ATL, adult T-cell leukaemia; BSA, bovine serum albumin; Cer, ceramide; DPPC, L-α-dipalmitoylphosphatidylcholine; EBV, Epstein-Barr virus; FCS, fetal calf serum; GalCer, Galβ1-1′Cer; GlcCer, Glcβ1-1′Cer; LacCer, Galβ1-4Glcβ1-1′Cer; Gb3Cer, Galα1-4Galβ1-4Glcβ1-1′Cer; Iyso-Gb3Cer, Galα1-4Galβ1-4Glc1-1′Sph; Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glc1-1′Cer; galactosylparagloboside, Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1′Cer; Gg3Cer, GalNAcβ1-4Galβ1-4Glcβ1-1′Cer; Gg4Cer, Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1′Cer; GM3, Neu5Acα2-3Galβ1-4Glcβ1-1′Cer; GM2, GalNAcβ1-4(Neu5Acα2-3) Galβ1-4Glcβ1-1′Cer; GM1a, Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1-1′Cer; GD1a, Neu5Acα2-3Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1-1′Cer; GD1b, Galβ1-3GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-3)Galβ1-4Glcβ1-1′Cer; GT1b, Neu5Acα2-3Galβ1-3GalNAcβ1-4(Neu5Acα2-8Neu5Acα2-3) Galβ1-4Glcβ1-1′Cer; HRP, horseradish peroxidase; LDH, lactate dehydrogenase; MAb, monoclonal antibody; MPL, monophosphoryl lipid A; P1 antigen, Galα1-4Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-1′Cer; PVP, polyvinylpyrolidone; Sph, sphingosine; sulfatide, HSO3-Galβ1-1′Cer; TDM, trehalose dimycolate; TLC, thin-layer chromatography This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
The physiological degradation of several membrane-bound glycosphingolipids (GSLs) by water-soluble lysosomal exohydrolases requires the assistance of sphingolipid activator proteins (SAPs). Four of these SAPs are synthesized from a single precursor protein (prosaposin). Inherited deficiency of this precursor results in a rare disease in humans with an accumulation of ceramide (Cer) and glycolipids such as glucosylceramide and lactosylceramide (LacCer). In a previous study, we have shown that human SAP-D stimulates the lysosomal degradation of Cer in precursor deficient cells. In order to study the role of SAPs (or saposins) A-D in cellular GSL catabolism, we recently investigated the catabolism of exogenously added [(3)H]labeled ganglioside GM1, Forssman lipid, and endogenously [(14)C]labeled GSLs in SAP-precursor deficient human fibroblasts after the addition of recombinant SAP-A, -B, -C and -D. We found that activator protein deficient cells are still able to slowly degrade gangliosides GM1 and GM3, Forssman lipid and globotriaosylceramide to a significant extent, while LacCer catabolism critically depends on the presence of SAPs. The addition of either of the SAPs, SAP-A, SAP-B or SAP-C, resulted in an efficient hydrolysis of LacCer.  相似文献   

18.
N Kojima  S Hakomori 《Glycobiology》1991,1(6):623-630
GM3-expressing cells adhere, spread and migrate on plastic plates coated with Gg3, LacCer and Gb4, but not with other glycosphingolipids (GSLs). Thus, cell adhesion, spreading and migration through GSL-GSL interaction occur in an analogous fashion to the interaction of cells with adhesive matrix proteins [AP, e.g. fibronectin (FN), laminin (LN)] through their integrin receptors. In this study, the adhesion of two GM3-expressing cell lines (B16 melanoma and HEL299 fibroblast) on plastic plates co-coated with GSL plus AP is compared with adhesion on plates coated with GSL (Gg3 or LacCer) alone, or coated with AP alone. Results show that: (i) cell adhesion on GSL-coated plates takes place earlier in the incubation period than that on AP-coated plates; (ii) cell adhesion, as well as spreading, was greatly enhanced (in terms of strength and rapidity) on plates co-coated with GSL plus AP; (iii) repulsion (negative adhesion) of cells was observed on plates co-coated with AP plus N-acetyl-GM3 (NAcGM3) and was presumably based on repulsive NAcGM3-NAcGM3 interaction; (iv) GM3-dependent cell adhesion on GSL-coated plates, as well as synergistic promotion of cell adhesion (based on the GSL-GSL and AP-integrin systems), was suppressed by incubation of cells with anti-GM3 monoclonal antibody DH2 or sialidase. Synergistic adhesion of cells on GSL/AP co-coated plates was less inhibited by incubation with peptide sequences RGDS or YIGSR than was adhesion on plates coated with AP alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

20.
We have characterized the fluorescence properties of 6-dodecanoyl-2-dimethylamine-naphthalene (LAURDAN) in pure interfaces formed by sphingomyelin and 10 chemically related glycosphingolipids (GSLs).1 The GSLs contain neutral and anionic carbohydrate residues in their oligosaccharide chain. These systems were studied at temperatures below, at, or above the main phase transition temperature of the pure lipid aggregates. The extent of solvent dipolar relaxation around the excited fluorescence probe in the GSLs series increases with the magnitude of the glycosphingolipid polar headgroup below the transition temperature. This conclusion is based on LAURDAN's excitation generalized polarization (GPex) and fluorescence lifetime values found in the different interfaces. A linear dependence between the LAURDAN GPex and the intermolecular spacing among the lipid molecules was found for both neutral and anionic lipids in the GSLs series. This relationship was also followed by phospholipids. We conclude that LAURDAN in these lipid aggregates resides in sites containing different amounts of water. The dimension of these sites increases with the size of the GSLs polar headgroup. The GP function reports on the concentration and dynamics of water molecules in these sites. Upon addition of cholesterol to Gg4Cer, the fluorescence behavior of LAURDAN was similar to that of pure cerebrosides and sphingomyelin vesicles. This observation was attributed to a change in the interfacial hydration as well as changes in the shape and size of the Gg4Cer aggregates in the presence of cholesterol. After the addition of cholesterol to gangliosides, the changes in the LAURDAN's spectral parameters decrease progressively as the polar headgroup of these lipids becomes more complex. This finding suggests that the dehydration effect of cholesterol depends strongly on the curvature radius and the extent of hydration of these lipid aggregates. In the gel phase of phrenosine, GalCer, Gg3Cer, sulfatide, and sphingomyelin, the excitation red band (410 nm) of LAURDAN was reduced with respect to that of LAURDAN in the gel phase of pure phospholipids. This observation indicates a local environment that interacts differently with the ground state of LAURDAN in GSLs when compared with LAURDAN in phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号