首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We analyzed the influence of Trypanosoma cruzi maintenance in different hosts (dog and mouse) on its susceptibility to benznidazole treatment. Five T. cruzi stocks were isolated from dogs inoculated with Be-62 or Be-78 strain (both sensitive to benznidazole) 2-10 years ago, and the benznidazole sensitivity was then determined using the mouse as experimental model. The different T. cruzi stocks obtained from long-term infected dogs showed 50-90% drug resistance right after isolation. However, maintenance of these T. cruzi stocks in mice, by successive blood passages (2.5 years), led to either a decrease or stability of the drug resistance pattern and an increase in parasite virulence. We also demonstrated the effectiveness of the induction of parasitemia reactivation by cyclophosphamide immunosuppression in the evaluation of the response to the specific drug treatment.  相似文献   

2.
Isofemale lines (IFL) from single egg masses were studied for genetic variation in Meloidogyne incognita isolates avirulent and virulent to the resistance gene Rk in cowpea (Vigna unguiculata). In parental isolates cultured on susceptible and resistant cowpea, the virulent isolate contained 100% and the avirulent isolate 7% virulent lineages. Virulence was selected from the avirulent isolate within eight generations on resistant cowpea (lineage selection). In addition, virulence was selected from avirulent females (individual selection). Virulence differed (P ≤ 0.05) both within and between cohorts of IFL cultured for up to 27 generations on susceptible or resistant cowpea. Distinct virulence profiles were observed among IFL. Some remained avirulent on susceptible plants and became extinct on resistant plants; some remained virulent on resistant and susceptible plants; some changed from avirulent to virulent on resistant plants; and others changed from virulent to avirulent on susceptible plants. Also, some IFL increased in virulence on susceptible plants. Single descent lines from IFL showed similar patterns of virulence for up to six generations. These results revealed considerable genetic variation in virulence in a mitotic parthenogenetic nematode population. The frequencies of lineages with stable or changeable virulence and avirulence phenotypes determined the overall virulence potential of the population.  相似文献   

3.
ABSTRACT. Reversible changes in kinetoplast DNA (kDNA) minicircles sequences were observed in clones of Trypanosoma cruzi strain Y, following a number of passages during exponential growth phase or after subcloning in blood-free medium. kDNA restriction patterns of clones were similar to those of the original uncloned strain, while subclones presented distinct kDNA restriction patterns. Homology experiments demonstrated strong hybridization between kDNA with the same electrophoretic mobility patterns while only weak signals were observed with kDNA of different patterns. The changes observed, which are unprecedented in T. cruzi clones, characterize transkinetoplastidy, and seem to be associated with similarly reversible changes both in zymodeme and in infectivity.  相似文献   

4.
Calmodulin-ubiquitin (cub) is a single-copy gene of Trypanosoma cruzi, which encodes a 208 aminoacid polypeptide of unknown function, containing putative calcium-binding domains. After targeted deletion, a clone (TulCub8) was derived where one of the two alleles was disrupted. This clone displayed a sharp and stable loss of virulence for mice. Parasitemias after inoculation of 10(6) trypomastigotes of the mutant, as compared to wild-type parasites were 68-fold lower (p=0.018) in adult Swiss mice and 27-fold lower (p=0.002) in newborn Balb/c mice. Epimastigote inocula of the mutant were strongly protective against infection by wild-type parasites. Virulence was not restored by serial passage in mice, showing that the attenuated phenotype is stable and gene-conversion from the intact cub allele does not occur at an appreciable rate. Retransfection of the missing cub allele restored virulence. Complementation experiments showed that the intact cub gene is necessary for full expression of virulence.  相似文献   

5.
An analysis of antibody recognition of Trypanosoma cruzi exoantigens by immunoblotting revealed a unique banding pattern that seems to be characteristic of each strain or isolate. Trypomastigote excreted-secreted antigens (TESA) present in supernatants of LLC-MK2 cells infected with 5 strains and 10 isolates of T. cruzi produced 13 different immunoblotting patterns. The same bands were observed when probed with acute-phase Chagas' disease serum or with serum from a rabbit immunized with the repetitive domain of T. cruzi transialidase recombinant protein (anti-shed acute-phase antigens). Three similar patterns were observed with TESA from 3 human isolates that probably belong to the same T. cruzi strain. When clone CL Brener, clone CL-14, and CL parental strain were analyzed, the same bands were observed, although they presented different biological behavior. These results suggest that immunoblotting analysis of TESA may be a useful tool for characterization of T. cruzi strains and isolates.  相似文献   

6.
Biological and molecular characteristics of a raccoon isolate of Trypanosoma cruzi (R36) were compared with those of a known virulent strain (Brazil). Included in the characterization were growth rate in liver infusion tryptose medium, infectivity for murine fibroblasts, intracellular amastigote replication and trypomastigote release rates, polymerase chain reaction (PCR) profiling of the mini-exon gene, isoenzyme and random amplified polymorphic DNA (RAPD) profiles, and in vivo virulence for C3H/HeJ mice. Similar growth curves were noted for both strains; however, infectivity and rates of intracellular amastigote replication and trypomastigote release were significantly lower for the R36 isolate than for the Brazil strain. To determine virulence, C3H/ HeJ mice were exposed intraperitoneally to the R36 isolate. No parasite was observed in blood by direct examination or in tissues by histology; however, T. cruzi was detected by PCR in tissues (quadriceps and spleen) at 21 days postinfection. Analyses of the mini-exon gene, isoenzyme, and RAPD profiles indicate that R36 is in the T. cruzi II group and the Brazil strain is in the T. cruzi I group. Although infectivity and virulence of the raccoon isolate were lower than those for the Brazil strain, autochthonous infections in the United States have been reported, which suggests the need for further study of local T. cruzi isolates.  相似文献   

7.
RAPD analysis and sequences of the mini-exon and ribosomal genes show that Trypanosoma cruzi can be clustered into two phylogenetic groups-T. cruzi I and II. Herein, the Representational Difference Analysis (RDA) method was used, providing new targets specific for each group. After three rounds of RDA hybridizing F strain (tester) with Y strain (driver) and vice-versa, an F-specific (F#30) and Y-specific (Y#22) clone were obtained specifically recognizing isolates from Amazonas (T. cruzi I) and Piauí (T. cruzi II). These segments corresponded to an unspecified protein (F#30) and a trans-sialidase (Y#22). Analysis of the F#30 sequence in T. cruzi I, T. cruzi II and zymodeme 3 samples displayed negligible specific differences that distinguished each group. In addition this F#30 gene has great potential as a hybrid marker.  相似文献   

8.
Populations of Trypanosoma cruzi can be clustered in two main phylogenetic lineages, T. cruzi I and T. cruzi II and a third group denominated Zymodeme III (ZIII) has been described. Using 23 isolates representing the two major T. cruzi groups and the Zymodeme III, the 3' untranslated region (3'UTR) of the calmodulin gene was analyzed. Several mutations located on a 330 bp segment of this 3'UTR were observed, among which three important insertion/deletion events, namely (1) a dinucleotide AG present only in ZIII isolates; (2) a 13 bases purine block missing only in ZIII; and (3) a five base GT block in T. cruzi II. Minimum free energy dot plots show that T. cruzi I and T. cruzi ZIII exhibit similar patterns of optimal and sub-optimal folding of this segment. These mutations in 3'UTR of calmodulin raise the possibility that T. cruzi I and ZIII group are sharing common functional routes.  相似文献   

9.
Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone) has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL). The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.  相似文献   

10.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

11.
PCR-RFLP patterns of four isolates of Trichinella for rDNA ITS1 region   总被引:4,自引:0,他引:4  
We have studied the genetic differences among four isolates of Trichinella including a new strain of Trichinella spiralis (ISS 623) recently found from a human case who took a badger in Korea. Because they have a different host origin and came from geographically separated regions, we supposed the genetic pattern of the isolates might be different as had been previously reported. It was analysed by PCR-RFLP analysis of the rDNA repeat that can readily distinguish a species or strain from others. Isolated genomic DNA of each isolate of Trichinella larvae was amplified with ITS1 specific primers and digested with restriction endonucleases. The PCR product of ITS1 was confirmed using Southern blot analysis to be a 910 bp fragment. The restriction fragments of each isolate had variable patterns when it was digested with Rsa 1 only. According to the RFLP patterns, the estimated genetic divergence between each isolate was different. In conclusion, four isolates of Trichinella including a new strain of T. spiralis obtained from a Korean patient may have genetic differences in the ITS1 region and the Shanghai isolate was genetically more similar to the Japanese unknown isolate than others in the ITS1 region.  相似文献   

12.
13.
Cathepsin D activity was estimated in midgut homogenates from Rhodnius prolixus, uninfected and experimentally infected with Trypanosoma cruzi, at different times after blood ingestion. No enzyme activity was found in the anterior midgut and rectum. In the posterior midgut, enzyme activity was found both in lumen and wall. In starved uninfected insects, in lumen and wall, cathepsin D activity was high, decreasing to a constant rate at 1-15 days after feeding. In insects infected with T. cruzi cathepsin D activity increased 1 and 3 days after blood meal. We suggest that these changes in cathepsin D activity in R. prolixus posterior midgut are due to the establishment of T. cruzi infection.  相似文献   

14.
The reproduction of single egg-mass isolates of Meloidogyne javanica from Crete that differed in virulence were compared on tomato (Lycopersicon esculentum) genotypes homozygous or heterozygous for the Mi gene. The reproduction of three isolates with partial virulence was much greater on tomato genotypes heterozygous for the Mi gene (cultivars Scala, Bermuda, and 7353) than on two homozygous genotypes (F8 inbred lines derived from Scala). The reproduction of a highly virulent isolate on the homozygous and heterozygous genotypes was similar to that on a susceptible cultivar. These results pose questions regarding the nature of partial virulence and indicate a quantitative effect of the Mi gene in relation to such virulence.  相似文献   

15.
The virulence index of three Meloidogyne incognita field isolates to the resistance gene Rk in cowpea was 0%, 75%, and 120%, with the index measured as reproduction on resistant plants as a percentage of the reproduction on susceptible plants. Continuous culture of the 75% virulent isolate on susceptible tomato for more than 5 years (about 25 generations) resulted in virulence decline to about 4%. The rate of the decline in virulence was described by exponential decay, indicating the progressive loss of virulence on a susceptible host. The 120% virulent isolate declined to 90% virulence during five generations on susceptible cowpea. Following virulence decline, the two isolates were compared over 5 years in inoculated field microplots both separately and as a mixture on susceptible, gene Rk, and gene Rk2 cowpea plants. At infestation of the plots, the two isolates were 1.2% and 92.0% virulent, respectively, to gene Rk and 0.2% and 8.1% virulent, respectively, to gene Rk2. Virulence to gene Rk in the two isolates and in mixture increased under 5 years of continuous Rk cowpea plants to 129% to 172% and under Rk2 cowpea plants to 113% to 139 % by year 5. Virulence to gene Rk2 increased during continuous cropping with Rk cowpea plants to 42% to 47% and with Rk2 cowpea plants to 22% to 48% by year 5. Selection of Rk2-virulence was slower in the isolate with low itt-virulence. The virulence to both genes Rk and Rk2 in the mixed population was not different from that in the highly virulent isolate by year 5 of all cropping combinations. Selection of Rk2-virulence on plants with Rk, and vice versa, indicated at least partial overlap of gene specificity between Rk and Rk2 with respect to selection of nematode virulence. This observation should be considered when resistance is used in cowpea rotations.  相似文献   

16.
A study of life-history traits was made to determine factors associated with the fitness of Meloidogyne incognita isolates virulent to resistance gene Rk in cowpea. Egg hatch, root penetration, egg mass production, and fecundity (eggs per egg mass) of avirulent and virulent phenotypes were compared among M. incognita isolates, isofemale lines, and single descent lines over multiple generations on resistant and susceptible cowpea. Variation (P ≤ 0.05) in both hatch and root penetration rates was found among isolates at a given generation. However, this variation was not consistent within nematode lines among generations, and there was no correlation with level of virulence, except for penetration and virulence on resistant cowpea at generation 20. Resistant and susceptible cowpea roots were penetrated at similar levels. Differences in reproductive factors on resistant plants were correlated with levels of virulence expression. In some isofemale lines, single descent lines, and isolates, lower (P ≤ 0.05) rates of egg mass production and fecundity on susceptible cowpea were associated with virulence to Rk, indicating a trade-off between reproductive fitness and virulence. Other virulent nematode lines from the same isolates did not have reduced reproductive ability on susceptible cowpea over 27 generations. Thus, virulent lineages varied in reproductive ability on susceptible cowpea, contributing to adaptation and maintenance of virulence within M. incognita populations under stabilizing selection.  相似文献   

17.
Ninety-one Chilean, 15 Bolivian, and 9 Argentinian Trypanosoma cruzi stocks, isolated from various hosts and vectors, were characterized by schizodeme analysis with EcoRI and MspI endonucleases. The three major similar pattern groups that emerged from this sample correlated with results of isoenzyme analysis. This result confirms previous work and supports the hypothesis of the clonal structure of natural populations of T. cruzi, fully defined at the level of isoenzyme analysis, quantitative kinetoplast DNA restriction fragment length polymorphism, and kinetoplast DNA hybridization analysis. In Chile, sylvatic and domestic cycles of T. cruzi transmission appear to be mainly independent: genetically different families of natural clones are specific to these cycles. Nevertheless, the possibility of overlap remains unclear. Results described here indicate that natural clones inhabiting Chilean regions appear genetically related to the natural clones identified in neighboring countries. In Chile the more frequently sampled parasite types are natural clone 39 and a genetically closely related clone NP13. In this work an evaluation of T. cruzi natural clone mixtures in T. cruzi stocks from Chile was performed for the first time by schizodeme analysis before and after serial transfer in mouse maintenance. The results indicate that six of nine stocks are composed of two or more natural clones. This observation raises the relevant question of whether specific T. cruzi natural clones generate different clinical features of Chagas' disease.  相似文献   

18.
The infection pattern in Swiss mice and Triatomine bugs (Rhodnius neglectus) of eleven clones and the original stock of a Trypanosoma cruzi isolate, derived from a naturally infected Didelphis marsupialis, were biochemically and biologically characterized. The clones and the original isolate were in the same zymodeme (Z1) except that two clones were found to be in zymodeme 2 when tested with G6PDH. Although infective, neither the original isolate nor the clones were highly virulent for the mice and lesions were only observed in mice infected with the original stock and one of the clones (F8). All clones and the original isolate infected bugs well while only the original isolate and clones E2 and F3 yielded high metacyclogenesis rates. An observed correlation between absence of lesions in the mammal host and high metacyclogenesis rates in the invertebrate host suggest a evolutionary trade off i.e. a fitness increase in one trait which is accompanied by a fitness reduction in a different one. Our results suggest that in a species as heterogeneous as T. cruzi, a cooperation effect among the subpopulations should be considered.  相似文献   

19.
The clone DiTat 1.1 of Trypanosoma brucei brucei was injected into four bovids, and clones obtained from successive waves of parasitemia were used to study the expressed variant-specific surface glycoprotein repertoire. Twenty-four clones were obtained which could be classified into 12 different variable antigen types, in addition to the clone injected, using agglutination or immunofluorescence with monospecific antisera. The variable surface glycoproteins of the 25 clones were extracted using the detergent octyl-beta-D-glucopyranoside in the presence of the protease inhibitor, N-cbz-L-phenylalaninechloromethylketone. The molecular weights varied from 52,000 to 69,000 and the pI from 5.0 to 8.8. The virulence of 14 clones representing 13 variable antigen types was ascertained in mice. The mean survival time ranged from 20.5 to 43.0 days. Clones isolated from early peaks of parasitemia in the bovid were the most virulent while clones derived from later peaks were less virulent. It seems that organisms of diminishing virulence appear in bovids, leading to self-cure of the disease. All clones were sensitive to human serum in a blood infectivity inhibition test. Antibody against all virulent clones appeared in 20 cattle (10 Zebus, 10 Baoulés) which had been injected with T. brucei DiTat 1.1. There was no evidence for parasites of high or low virulence being preferentially expressed in resistant or sensitive hosts.  相似文献   

20.
A set of 65 Trypanosoma cruzi stocks from dogs, opossums, insect vectors and humans was isolated in a geographically restricted endemic area for Chagas' disease in Argentina and was analysed by multilocus enzyme electrophoresis for 15 loci. The results show that at least five multilocus genotypes (clonets) circulate in the study area, one belonging to T. cruzi IIe, one to T. cruzi IId and three clonets belonging to T. cruzi I; and they confirm the presence of these lineages in the country. The three clonets attributed to T. cruzi I were identical to each other for all loci except for Sod-2, where three different patterns were identified. These patterns suggest the presence of two homozygous genotypes and one heterozygous genotype. Our results also suggest association of clonet IIe with dogs, clonet IId with humans and the three T. cruzi I clonets with Didelphis albiventris. On the other hand, there was no significant association between Triatoma infestans and any particular clonet circulating in the area. These findings are consistent with the hypothesis of natural selection, from mixed populations of T. cruzi in vectors, toward more restricted populations in mammals. The epidemiological implications of the possible selection of different clonets by different mammal hosts and the significance of two homozygous genotypes and one heterozygous genotype for the Sod-2 locus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号