首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary Temperature-sensitive nitrogen fixation mutants of Azotobacter vinelandii were obtained by nitrosoguanidine mutagenesis and penicillin selection. The mutants were unable to grow on N2 at 39° but grew normally at 30° on N2 and at both temperatures in the presence of metabolizable nitrogen compounds. Growth experiments and assays of whole cells for nitrogenase activity separated the mutants into two classes: 1. mutants in which the nitrogenase activity present in cells grown at 30° was unaffected by a shift to 39°, and 2. mutants which lost their nitrogen fixation activity after such a temperature shift. Assays of cell-free extracts of the second class of mutants showed that in all cases tested the enzymatic activity of the nitrogenase complex itself was not affected by the mutation. These mutants might therefore contain some other temperature-sensitive proteins specifically involved in nitrogen fixation.  相似文献   

3.
4.
Nitrogen fixation by the free-living organism Azotobacter vinelandii can occur through the activity of three different systems that are genetically distinct but mechanistically related. A combination of bioinformatic and biochemical-genetic studies has revealed that at least 82 different genes are likely to be associated with the formation and regulation of these systems. Studies performed over many years have established that cross-talk occurs between the various nitrogen fixation systems, and that expression and fine-tuning of their activities are integrated with overall cellular physiology. Martinez-Noel and co-workers now report another newly discovered aspect of the process. Evidence is presented to suggest that a nitrogen fixation-specific paralogue of ClpX is used to control the accumulation of proteins involved in formation of a metal-sulphur cluster that provides a nitrogenase active site. The intriguing aspect of this work is that it indicates that the nitrogen fixation-associated ClpX must recruit ClpP, for which a paralogue is not duplicated within any of the nitrogen fixation regions of the genome, to achieve its function related to nitrogen fixation. Inspection of the A. vinelandii genome indicates that such recruitment of cellular housekeeping components is a common feature used to integrate nitrogen fixation with global cellular physiology.  相似文献   

5.
6.
Nitrogenase activities were determined from maximum acetylene reduction rates for mutant strains of Azotobacter vinelandii which are unable to fix N2 in the presence of molybdenum (Nif-) but undergo phenotypic reversal to Nif+ under conditions of Mo deficiency. The system responsible for N2 fixation under these conditions is thought to be an alternative N2 fixation system (Bishop et al., Proc. Natl. Acad. Sci. U.S.A. 77:7342-7346, 1980). Phenotypic reversal of Nif- strains to Nif+ strains was also observed in N-free medium without Mo but with either V or Re. Two protein patterns were found on two-dimensional gels of proteins from the extracts of wild-type cells cultured in N-free medium without Mo and with or without V or Re. The expression of each protein pattern in the wild-type strain of A. vinelandii seemed to depend upon the physiological state of the N2-fixing culture. Electron paramagnetic resonance experiments were conducted on whole cells of A. vinelandii grown under conditions of Mo deprivation in the absence of fixed N. No g = 3.65 signal (an electron paramagnetic resonance signal characteristic of the Mo-containing component of nitrogenase) was detectable in these cells, regardless of whether V or Re was present during growth of these cells, These results are discussed from the perspective that the well-known effect of V on N2 fixation by A. vinelandii may involve an alternative N2 fixation system.  相似文献   

7.
8.
9.
10.
The levels of the adenine nucleotides, pyridine nucleotides and the kinetical parameters of the enzymes of the Entner-Doudoroff pathway (glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) were determined in Azotobacter vinelandii cells, grown under O2- or N2-limiting conditions. It was concluced that the levels of both the adenine nucleotides and pyridine nucleotides do not limit the rate of sucrose oxidation. Experiments with radioactive pyruvate and sucrose show that the rate of sucrose oxidation of Azotobacter cells is associated with an increase in the rate of sucrose uptake. The sites of oxidative phosphorylation and the composition of the respiratory membranes with respect to cytochromes c4 + c5, b and d differ in cells growth either O2- or N2-limited. It was possible to show that the respiration protection of the nitrogen-fixing system in Azotobacter is mainly independent of the oxidation capacity of the cells. The oxidation capacity intrinsically depends on the type of substrate and can be partly adapted. The maximum activity of the nitrogenase in Azotobacter depends on the type of substrate oxidized. Although the level of energy charge is somewhat dependent on the type of substrate used, no obvious relation can be derived between changes in energy charge and nitrogenase activity. An alternative proposal is given.  相似文献   

11.
12.
Life on Earth depends on N2-fixing microbes to make ammonia from atmospheric N2 gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2 fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ15N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N2-fixing bacterium Azotobacter vinelandii. N2 fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2 fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2 fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N2 fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.  相似文献   

13.
14.
15.
A number of chlorate-resistant mutants were selected, and one of these, clr68-5, was studied in detail. This mutant cannot utilize nitrate in vivo to overcome the effect of nonmetabolizable repressors of nitrogenase. The reason for this inability was that strain clr68-5 lacked nitrate reductase. Nitrate inhibited the activity of nitrogenase but did not act as a corepressor of nitrogenase in strain clr68-5 as it does in the wild type. Ammonia seemed to act as corepressor of nitrogenase in both strains.  相似文献   

16.
Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium   总被引:2,自引:0,他引:2  
Nitrogenase was isolated and purified from wild-type and a tungsten-resistant mutant (LM2) of Azotobacter vinelandii strain OP derepressed on medium containing 1-10 mM W. While the enzyme from the wild-type strain contained the polypeptides of the conventional enzyme, metal analysis of component 1 demonstrated the existence of one atom each of molybdenum and tungsten. Furthermore, the ESR spectrum of this protein contained three signals, two of which originated from S = 3/2 spin states. One of these signals is nearly identical to that of the conventional MoFe-protein while the other is hypothesized to originate from a W-containing cofactor. In spite of the presence of W, the substrate reduction pattern of this enzyme is the same as that of the conventional enzyme.  相似文献   

17.
18.
Mutants of Azotobacter vinelandii unable to fix nitrogen   总被引:9,自引:0,他引:9  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号