首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different isoforms of a protein complex termed the apoptosis- and splicing-associated protein (ASAP) were isolated from HeLa cell extract. ASAP complexes are composed of the polypeptides SAP18 and RNPS1 and different isoforms of the Acinus protein. While Acinus had previously been implicated in apoptosis and was recently identified as a component of the spliceosome, RNPS1 has been described as a general activator of RNA processing. Addition of ASAP isoforms to in vitro splicing reactions inhibits RNA processing mediated by ASF/SF2, by SC35, or by RNPS1. Additionally, microinjection of ASAP complexes into mammalian cells resulted in acceleration of cell death. Importantly, after induction of apoptosis the ASAP complex disassembles. Taken together, our results suggest an important role for the ASAP complexes in linking RNA processing and apoptosis.  相似文献   

2.
The multiprotein exon junction complex (EJC) is deposited on mRNAs upstream of exon-exon junctions as a consequence of pre-mRNA splicing. In mammalian cells, this complex serves as a key modulator of spliced mRNA metabolism. To date, neither the complete composition nor the exact assembly pathway of the EJC has been entirely elucidated. Using in vitro splicing and a two-step chromatography procedure, we have purified the EJC and analyzed its components by mass spectrometry. In addition to finding most of the known EJC factors, we identified two novel EJC components, Acinus and SAP18. Heterokaryon analysis revealed that SAP18 is a shuttling protein whereas Acinus is restricted to the nucleus. In MS2 tethering assays Acinus stimulated gene expression at the RNA level, while MLN51, another EJC factor, stimulated mRNA translational efficiency. Using tandem affinity purification (TAP) of proteins overexpressed in HeLa cells, we demonstrated that Acinus binds directly to another EJC component, RNPS1, while stable association of SAP18 to form the trimeric apoptosis and splicing associated protein (ASAP) complex requires both Acinus and RNPS1. Using the same methodology, we further identified what appears to be the minimal stable EJC core, a heterotetrameric complex consisting of eIF4AIII, Magoh, Y14, and MLN51.  相似文献   

3.
Apoptotic chromatin condensation inducer in the nucleus (Acinus) is an RNA‐binding protein that has a functional role in inducing apoptotic chromatin condensation and regulating messenger RNA (mRNA) processing. Acinus interacts with the spliceosomal machinery and is a member of the ASAP (apoptosis and splicing‐associated protein complex) as well as the EJC (exon junction complex), which gets deposited onto mRNA during splicing. In this study, we have used in vivo splicing assays to characterize the function of Acinus in pre‐mRNA splicing more closely. We show that full‐length Acinus‐S′, an isoform of Acinus, does not have a role in modulating splice site selection in human immunodeficiency virus 1 minigene reporter system. In contrast, we observed that the tethering of arginine/serine (RS) and RNPS1‐SAP18‐binding (RSB) domains of Acinus could regulate the selection of alternative splice sites, thereby revealing the potential of Acinus in stimulating alternative splicing. Altogether, our data suggest that the RS and RSB domains play a critical role in regulating splicing activity via selection of distinct splice sites during pre‐mRNA splicing.  相似文献   

4.
Several apoptotic regulators, including Bcl-x, are alternatively spliced to produce isoforms with opposite functions. We have used an RNA interference strategy to map the regulatory landscape controlling the expression of the Bcl-x splice variants in human cells. Depleting proteins known as core (Y14 and eIF4A3) or auxiliary (RNPS1, Acinus, and SAP18) components of the exon junction complex (EJC) improved the production of the proapoptotic Bcl-x(S) splice variant. This effect was not seen when we depleted EJC proteins that typically participate in mRNA export (UAP56, Aly/Ref, and TAP) or that associate with the EJC to enforce nonsense-mediated RNA decay (MNL51, Upf1, Upf2, and Upf3b). Core and auxiliary EJC components modulated Bcl-x splicing through different cis-acting elements, further suggesting that this activity is distinct from the established EJC function. In support of a direct role in splicing control, recombinant eIF4A3, Y14, and Magoh proteins associated preferentially with the endogenous Bcl-x pre-mRNA, interacted with a model Bcl-x pre-mRNA in early splicing complexes, and specifically shifted Bcl-x alternative splicing in nuclear extracts. Finally, the depletion of Y14, eIF4A3, RNPS1, SAP18, and Acinus also encouraged the production of other proapoptotic splice variants, suggesting that EJC-associated components are important regulators of apoptosis acting at the alternative splicing level.  相似文献   

5.
Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.  相似文献   

6.
7.
8.
Biochemical purification of a pre-mRNA splicing activity from HeLa cells that stimulates distal alternative 3' splice sites in a concentration-dependent manner resulted in the identification of RNPS1, a novel general activator of pre-mRNA splicing. RNPS1 cDNAs, encoding a putative nucleic-acid-binding protein of unknown function, were previously identified in mouse and human. RNPS1 is conserved in metazoans and has an RNA-recognition motif preceded by an extensive serine-rich domain. Recombinant human RNPS1 expressed in baculovirus functionally synergizes with SR proteins and strongly activates splicing of both constitutively and alternatively spliced pre-mRNAs. We conclude that RNPS1 is not only a potential regulator of alternative splicing but may also play a more fundamental role as a general activator of pre-mRNA splicing.  相似文献   

9.
Human RNPS1 was originally characterized as a pre-mRNA splicing activator in vitro and was shown to regulate alternative splicing in vivo. RNPS1 was also identified as a protein component of the splicing-dependent mRNP complex, or exon-exon junction complex (EJC), and a role for RNPS1 in postsplicing processes has been proposed. Here we demonstrate that RNPS1 incorporates into active spliceosomes, enhances the formation of the ATP-dependent A complex, and promotes the generation of both intermediate and final spliced products. RNPS1 is phosphorylated in vivo and interacts with the CK2 (casein kinase II) protein kinase. Serine 53 (Ser-53) of RNPS1 was identified as the major phosphorylation site for CK2 in vitro, and the same site is also phosphorylated in vivo. The phosphorylation status of Ser-53 significantly affects splicing activation in vitro, but it does not perturb the nuclear localization of RNPS1. In vivo experiments indicated that the phosphorylation of RNPS1 at Ser-53 influences the efficiencies of both splicing and translation. We propose that RNPS1 is a splicing regulator whose activator function is controlled in part by CK2 phosphorylation.  相似文献   

10.
11.
SUMO (small ubiquitin-like modifier)/Smt3 (suppressor of mif two) is a member of the ubiquitin-related protein family and is known to conjugate with many proteins. In the sumoylation pathway, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme), and E3 (SUMO ligase) functions as an adaptor between E2 and each substrate. Yeast Ull1 (ubiquitin-like protein ligase 1)/Siz1, a PIAS (protein inhibitor of activated STAT)-type SUMO ligase, modifies both cytoplasmic and nuclear proteins. In this paper, we performed a domain analysis of Ull1/Siz1 by constructing various deletion mutants. A novel conserved N-terminal domain, called PINIT, as well as the RING-like domain (SP-RING) were required for the SUMO ligase activity in the in vitro conjugation system and for interaction with Smt3 in an in vitro binding assay. The most distal N-terminal region, which contains a putative DNA-binding SAF-A/B, Acinus, and PIAS (SAP) motif, was not required for the ligase activity but was involved in nuclear localization. A strong SUMO-binding motif was identified, which interacted with Smt3 in the two-hybrid system but was not necessary for the ligase activity. The most distal C-terminal domain was important for stable localization at the bud neck region and thereby for the substrate recognition of septins. Furthermore, the C-terminal half conferred protein instability on Ull1/Siz1. Taken together, we conclude that the SP-RING and PINIT of Ull1/Siz1 are core domains of the SUMO ligase, and the other domains are regulatory for protein stability and subcellular localization.  相似文献   

12.
Alternative splicing is typically controlled by complexes of regulatory proteins that bind to sequences within or flanking variable exons. The identification of regulatory sequence motifs and the characterization of sequence motifs bound by splicing regulatory proteins have been essential to predicting splicing regulation. The activation-responsive sequence (ARS) motif has previously been identified in several exons that undergo changes in splicing upon T cell activation. hnRNP L binds to this ARS motif and regulates ARS-containing exons; however, hnRNP L does not function alone. Interestingly, the proteins that bind together with hnRNP L differ for different exons that contain the ARS core motif. Here we undertake a systematic mutational analysis of the best characterized context of the ARS motif, namely the ESS1 sequence from CD45 exon 4, to understand the determinants of binding specificity among the components of the ESS1 regulatory complex and the relationship between protein binding and function. We demonstrate that different mutations within the ARS motif affect specific aspects of regulatory function and disrupt the binding of distinct proteins. Most notably, we demonstrate that the C77G polymorphism, which correlates with autoimmune disease susceptibility in humans, disrupts exon silencing by preventing the redundant activity of hnRNPs K and E2 to compensate for the weakened function of hnRNP L. Therefore, these studies provide an important example of the functional relevance of combinatorial function in splicing regulation and suggest that additional polymorphisms may similarly disrupt function of the ESS1 silencer.  相似文献   

13.
Cyclin E-cdk2 is a critical regulator of cell cycle progression from G1 into S phase in mammalian cells. Despite this important function little is known about the downstream targets of this cyclin-kinase complex. Here we have identified components of the pre-mRNA processing machinery as potential targets of cyclin E-cdk2. Cyclin E-specific antibodies coprecipitated a number of cyclin E-associated proteins from cell lysates, among which are the spliceosome-associated proteins, SAP 114, SAP 145, and SAP 155, as well as the snRNP core proteins B′ and B. The three SAPs are all subunits of the essential splicing factor SF3, a component of U2 snRNP. Cyclin E antibodies also specifically immunoprecipitated U2 snRNA and the spliceosome from splicing extracts. We demonstrate that SAP 155 serves as a substrate for cyclin E-cdk2 in vitro and that its phosphorylation in the cyclin E complex can be inhibited by the cdk-specific inhibitor p21. SAP 155 contains numerous cdk consensus phosphorylation sites in its N terminus and is phosphorylated prior to catalytic step II of the splicing pathway, suggesting a potential role for cdk regulation. These findings provide evidence that pre-mRNA splicing may be linked to the cell cycle machinery in mammalian cells.  相似文献   

14.
Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA–protein interactions achieved by a specialized DNA-binding motif.  相似文献   

15.
Pre-mRNA splicing occurs in a large macromolecular RNA-protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and alpha-amanitin. Using adenovirus E1A and chimeric calcitonin/dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5(') and 3(') splicing by decreasing the use of distal splice sites. Regulation of 5(') splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5(') splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.  相似文献   

16.
The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine–serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S′, but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.  相似文献   

17.
Arf GAPs are a family of enzymes that catalyze the hydrolysis of GTP bound to Arf. Arf GAP1 is one member of the family that has a critical role in membrane traffic at the Golgi apparatus. Two distinct models for the regulation of Arf GAP1 in membrane traffic have been proposed. In one model, Arf GAP1 functions in a ternary complex with coat proteins and is inhibited by cargo proteins. In another model, Arf GAP1 is recruited to a membrane surface that has defects created by the increased membrane curvature that accompanies transport vesicle formation. Here we have used kinetic and mutational analysis to test predictions of models of regulation of Arf GAP1. We found that Arf GAP1 has a similar affinity for Arf1.GTP as another Arf GAP, ASAP1, but the catalytic rate is approximately 0.5% that of ASAP1. Coatomer stimulated Arf GAP1 activity; however, different from that predicted from the current model, coatomer affected the K(m) and not the k(cat) values. Effects of most mutations in Arf GAP1 paralleled those in ASAP1. Mutation of an arginine that aligned with an arginine presumed to be catalytic in ASAP1 abrogated activity. Peptide from the cytoplasmic tail of cargo proteins inhibited Arf GAP1; however, the unrelated Arf GAP ASAP1 was also inhibited. The curvature of the lipid bilayer had a small effect on activity of Arf GAP1 under the conditions of our experiments. We conclude that coatomer is an allosteric regulator of Arf GAP1. The relevance of the results to the two models of Arf GAP1-mediated regulation of Arf1 is discussed.  相似文献   

18.
In the nonsense-mediated mRNA decay (NMD) pathway, an exon-junction protein complex (EJC) and hUpf proteins mediate rapid downregulation of aberrant mRNAs that terminate translation upstream of the last splice junction. Two EJC subunits, Y14 and RNPS1, have been proposed to act as a link between splicing and NMD by recruiting hUpf3 and the other hUpf proteins. New studies now present evidence that Y14 is directly involved in NMD, and that Y14 is required for hUpf3 activity. These findings suggest unforeseen intricacies in the formation of active NMD complexes.  相似文献   

19.
Cells can regulate their protein repertoire in response to extracellular stimuli via alternative splicing; however, the mechanisms controlling this process are poorly understood. The CD45 gene undergoes alternative splicing in response to T-cell activation to regulate T-cell function. The ESS1 splicing silencer in CD45 exon 4 confers basal exon skipping in resting T cells through the activity of hnRNP L and confers activation-induced exon skipping in T cells via previously unknown mechanisms. Here we have developed an in vitro splicing assay that recapitulates the signal-induced alternative splicing of CD45 and demonstrate that cellular stimulation leads to two changes to the ESS1-bound splicing regulatory complex. Activation-induced posttranslational modification of hnRNP L correlates with a modest increase in the protein's repressive activity. More importantly, the splicing factor PSF is recruited to the ESS1 complex in an activation-dependent manner and accounts for the majority of the signal-regulated ESS1 activity. The associations of hnRNP L and PSF with the ESS1 complex are largely independent of each other, but together these proteins account for the total signal-regulated change in CD45 splicing observed in vitro and in vivo. Such a combinatorial effect on splicing allows for precise regulation of signal-induced alternative splicing.  相似文献   

20.
Pre-mRNA splicing removes introns and leaves in its wake a multiprotein complex near the exon-exon junctions of mRNAs. This complex, termed the exon-exon junction complex (EJC), contains at least seven proteins and provides a link between pre-mRNA splicing and downstream events, including transport, localization, and nonsense-mediated mRNA decay. Using a simple whole cell lysate system we developed for in vitro splicing, we prepared lysates from cells transfected with tagged EJC proteins and studied the association of these proteins with pre-mRNA, splicing intermediates, and mRNA, as well as formation of the EJC during splicing. Three of the EJC components, Aly/REF, RNPS1, and SRm160, are found on pre-mRNA by the time the spliceosome is formed, whereas Upf3b associates with splicing intermediates during or immediately after the first catalytic step of the splicing reaction (cleavage of exon 1 and intron-lariat formation). In contrast, Y14 and magoh, which remain stably associated with mRNA after export to the cytoplasm, join the EJC during or after completion of exon-exon ligation. These findings indicate that EJC formation is an ordered pathway that involves stepwise association of components and is coupled to specific intermediates of the splicing reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号