首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, derived froman outbreak in Sakai city, Japan in 1996, possesses two kindsof plasmids: a 93-kb plasmid termed pO157, found in clinicalEHEC isolates world-wide and a 3.3-kb plasmid termed pOSAK1,prevalent in EHEC strains isolated in Japan. Complete nucleotidesequences of both plasmids have been determined, and the putativefunctions of the encoded proteins and the cis-acting DNA sequenceshave been analyzed. pO157 shares strikingly similar genes andDNA sequences with F-factor and the transmissible drug-resistantplasmid R100 for DNA replication, copy number control, plasmidsegregation, conjugative functions and stable maintenance inthe host, although it is defective in DNA transfer by conjugationdue to the truncation and deletion of the required genes andDNA sequences. In addition, it encodes several proteins implicatedin EHEC pathogenicity such as an EHEC hemolysin (HlyA), a catalase-peroxidase(KatP), a serine protease (EspP) and type II secretion system.pOSAK1 possesses a ColE1-like replication system, and the DNAsequence is extremely similar to that of a drug-resistant plasmid,NTP16, derived from Salmonella typhimurium except that it lacksdrug resistance transposons.  相似文献   

2.
3.
The effects of addition of the photosensitizer riboflavin (RF) to semidilute solutions of the systems ethyl(hydroxyethyl)cellulose (EHEC)/water, EHEC/sodium dodecyl sulfate (SDS), and EHEC/cetyltrimethylammonium bromide (CTAB) on the turbidity and the linear viscoelasticity are studied. The turbidity behavior and the cloud point (CP) are influenced by the addition of RF to the EHEC/SDS system, whereas no discernible change is observed for the other systems. The rheological features of all systems are affected by the presence of RF at lower temperatures, whereas at temperatures close to the CP, only a slight effect is detected. Both the EHEC/SDS and EHEC/CTAB systems evolve thermoreversible gels at the same temperature (37.5 degrees C), but in the presence of RF, the EHEC/CTAB system does not form a gel, whereas the gel temperature for the EHEC/SDS system is depressed (32.5 degrees C). Light irradiation of RF in the EHEC/SDS/RF system causes fragmentation of the network and a higher temperature is required to re-form the incipient gel network. The photochemical degradation of EHEC gives rise to a decrease in the dynamic moduli and the complex viscosity for all of the three systems. The effect is strengthened at higher temperatures and it is most pronounced for the EHEC/SDS system.  相似文献   

4.
Antimicrobial peptides (AMPs) are important components of the innate immune system. Enterohaemorrhagic Escherichia coli (EHEC), a food‐borne pathogen causing serious diarrheal diseases, must overcome attack by AMPs. Here, we show that resistance of EHEC against human cathelicidin LL‐37, a primary AMP, was enhanced by butyrate, which has been shown to act as a stimulant for the expression of virulence genes. The increase of resistance depended on the activation of the ompT gene, which encodes the outer membrane protease OmpT for LL‐37. The expression of the ompT gene was enhanced through the activation system for virulence genes. The increase in ompT expression did not result in an increase in OmpT protease in bacteria but in enhancement of the production of OmpT‐loaded outer membrane vesicles (OMVs), which primarily contributed to the increase in LL‐37‐resistance. Furthermore, a sublethal dosage of LL‐37 stimulated the production of OMVs. Finally, we showed that OMVs produced by OmpT‐positive strains protect the OmpT‐negative strain, which is susceptible to LL‐37 by itself more efficiently than OMVs from the ompT mutant. These results indicate that EHEC enhances the secretion of OmpT‐loaded OMVs in coordination with the activation of virulence genes during infection and blocks bacterial cell attack by LL‐37.  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC), a food- and waterborne pathogen, causes diarrhea, hemorrhagic colitis, and life-threatening HUS. MLVA is a newly developed and widely accepted genotyping tool. An MLVA system for EHEC O157 involving nine genomic loci has already been established. However, the present study revealed that the above-mentioned MLVA system cannot analyze EHEC O26 and O111 isolates-the second and third most dominant EHEC serogroups in Japan, respectively. Therefore, with several modifications to the O157 system and the use of nine additional loci, we developed an expanded MLVA system applicable to EHEC O26, O111, and O157. Our MLVA system had a relatively high resolution power for each of the three serogroups: Simpson's index of diversity was 0.991 (95% CI = 0.989-0.993), 0.988 (95% CI, 0.986-0.990), and 0.986 (95% CI, 0.979-0.993) for O26, O111, and O157, respectively. This system also detected outbreak-related isolates; the isolates collected during each of the 12 O26 and O111 outbreaks formed unique clusters, and most of the repeat copy numbers among the isolates collected during the same outbreak exhibited no or single-locus variations. These results were comparable to those of cluster analyses based on PFGE profiles. Therefore, our system can complement PFGE analysis-the current golden method. Because EHEC strains of three major serogroups can be rapidly analyzed on a single platform with our expanded MLVA system, this system could be widely used in molecular epidemiological studies of EHEC infections.  相似文献   

6.
Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagic Escherichia coli (EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression of torR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression of glpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.  相似文献   

7.
8.
9.
10.
11.
Bilirubin is the terminal metabolite in heme catabolism in mammals. After deposition into bile, bilirubin is released in large quantities into the mammalian gastrointestinal (GI) tract. We hypothesized that intestinal bilirubin may modulate the function of enteric bacteria. To test this hypothesis, we investigated the effect of bilirubin on two enteric pathogens; enterohemorrhagic E. coli (EHEC), a Gram-negative that causes life-threatening intestinal infections, and E. faecalis, a Gram-positive human commensal bacterium known to be an opportunistic pathogen with broad-spectrum antibiotic resistance. We demonstrate that bilirubin can protect EHEC from exogenous and host-generated reactive oxygen species (ROS) through the absorption of free radicals. In contrast, E. faecalis was highly susceptible to bilirubin, which causes significant membrane disruption and uncoupling of respiratory metabolism in this bacterium. Interestingly, similar results were observed for other Gram-positive bacteria, including B. cereus and S. aureus. A model is proposed whereby bilirubin places distinct selective pressure on enteric bacteria, with Gram-negative bacteria being protected from ROS (positive outcome) and Gram-positive bacteria being susceptible to membrane disruption (negative outcome). This work suggests bilirubin has differential but biologically relevant effects on bacteria and justifies additional efforts to determine the role of this neglected waste catabolite in disease processes, including animal models.  相似文献   

12.
13.
14.
Subversion of the host cell cytoskeleton is the hallmark of enterohaemorrhagic Escherichia coli (EHEC) infection. EHEC translocates the trans -membrane receptor protein Tir (translocated intimin receptor), which links the extracellular bacterium to the eukaryotic cell actin cytoskeleton, triggering formation of actin-rich pedestals beneath adherent bacteria. Tir-mediated actin accretion by EHEC requires TccP (Tir cytoskeleton coupling protein), a recently discovered type III secretion system effector protein which, following translocation, binds and activates Wiskott–Aldrich syndrome protein (N-WASP), which in turn activates the actin-related protein 2/3 complex leading to localized polymerization of actin. In this study, truncated N-WASP and TccP derivatives were generated and tested in in vitro actin polymerization and epithelial cell infection assays. The C-terminal amino acids 253–276 of the GTPase binding domain (GBD) of N-WASP were identified as essential, although not sufficient, for TccP:N-WASP protein:protein interaction, TccP-mediated N-WASP activation and induction of actin polymerization. TccP from EHEC O157:H7 strain EDL933 consists of a unique N-terminal domain and six proline-rich repeats. Progressive deletions within the N-terminus of TccP revealed that residues 1–21 are necessary and sufficient for its translocation, while amino acids 1–181, encompassing the N-terminal translocation signal and two proline-rich repeats, are sufficient for triggering actin polymerization in EHEC-infected epithelial cells and in in vitro actin polymerization assays. This study defines the modular domain structure of TccP and the molecular basis of TccP-mediated N-WASP activation and EHEC-induced remodelling of the host actin cytoskeleton.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes serious diarrhea and hemolytic uremic syndrome in humans. The expressions of EspD and intimin by O157:H7 have now been shown to be down-regulated by medium conditioned by O157:H7 grown at stationary phase. Preparation of conditioned medium showing the effect on the amount of EspD was not dependent on temperature or growth medium, but was dependent on growth phase. Inhibition of EspD and intimin expression was also induced by medium conditioned by E. coli K-12 strains and homoserine lactone, a signal molecule of the quorum-sensing system in gram-negative bacteria. These results suggest the possibility that the quorum-sensing system mediated by self-produced extracellular factors plays an important role in control of colonization of EHEC O157:H7.  相似文献   

16.
Enterohemorrhagic E. coli (EHEC) is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424) co-cultured with B. thetaiotaomicron (CCUG 10774) or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes) and in the presence of spent medium (44 genes), and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS) are located on the Locus of enterocyte effacement (LEE) pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5) were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium). These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing the efficiency of colonization of the colon mucosa, facilitating its persistence and increasing its virulence potential.  相似文献   

17.
The NF-κB signaling pathway is central to the innate and adaptive immune responses. Upon their detection of pathogen-associated molecular patterns, Toll-like receptors on the cell surface initiate signal transduction and activate the NF-κB pathway, leading to the production of a wide array of inflammatory cytokines, in attempt to eradicate the invaders. As a countermeasure, pathogens have evolved ways to subvert and manipulate this system to their advantage. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely related bacteria responsible for major food-borne diseases worldwide. Via a needle-like protein complex called the type three secretion system (T3SS), these pathogens deliver virulence factors directly to host cells and modify cellular functions, including by suppressing the inflammatory response. Using gain- and loss-of-function screenings, we identified two bacterial effectors, NleC and NleE, that down-regulate the NF-κB signal upon being injected into a host cell via the T3SS. A recent report showed that NleE inhibits NF-κB activation, although an NleE-deficient pathogen was still immune-suppressive, indicating that other anti-inflammatory effectors are involved. In agreement, our present results showed that NleC was also required to inhibit inflammation. We found that NleC is a zinc protease that disrupts NF-κB activation by the direct cleavage of NF-κB's p65 subunit in the cytoplasm, thereby decreasing the available p65 and reducing the total nuclear entry of active p65. More importantly, we showed that a mutant EPEC/EHEC lacking both NleC and NleE (ΔnleC ΔnleE) caused greater inflammatory response than bacteria carrying ΔnleC or ΔnleE alone. This effect was similar to that of a T3SS-defective mutant. In conclusion, we found that NleC is an anti-inflammatory bacterial zinc protease, and that the cooperative function of NleE and NleC disrupts the NF-κB pathway and accounts for most of the immune suppression caused by EHEC/EPEC.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) causes a disease involving diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). Here we present the draft genome sequence of NCCP15647, an EHEC isolate from an HUS patient. Its genome exhibits features of EHEC, such as genes for verotoxins, a type III secretion system, and prophages.  相似文献   

19.
20.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes serious diarrhea and hemolytic uremic syndrome in humans. The expressions of EspD and intimin by O157:H7 have now been shown to be down-regulated by medium conditioned by O157:H7 grown at stationary phase. Preparation of conditioned medium showing the effect on the amount of EspD was not dependent on temperature or growth medium, but was dependent on growth phase. Inhibition of EspD and intimin expression was also induced by medium conditioned by E. coli K-12 strains and homoserine lactone, a signal molecule of the quorum-sensing system in Gram-negative bacteria. These results suggest the possibility that the quorum-sensing system mediated by self-produced extracellular factors plays an important role in control of colonization of EHEC O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号