共查询到20条相似文献,搜索用时 15 毫秒
1.
Freywald A Sharfe N Rashotte C Grunberger T Roifman CM 《The Journal of biological chemistry》2003,278(12):10150-10156
EphB6 is the most recently identified member of the Eph receptor tyrosine kinase family. EphB6 is primarily expressed in thymocytes and a subpopulation of T cells, suggesting that it may be involved in regulation of T lymphocyte differentiation and functions. We show here that overexpression of EphB6 in Jurkat T cells and stimulation with the EphB6 ligand, ephrin-B1, results in the selective inhibition of TCR-mediated activation of JNK but not the MAPK pathway. EphB6 appears to suppress the JNK pathway by preventing T cell receptor (TCR)-induced activation of the small GTPase Rac1, a critical event in initiating the JNK cascade. Furthermore, EphB6 blocked anti-CD3-induced secretion of IL-2 and CD25 expression in a ligand-dependent manner. Dominant negative EphB6 suppressed the inhibitory activity of the endogenous receptor and enhanced anti-CD3-induced JNK activation, CD25 expression, and IL-2 secretion, confirming the requirement for EphB6-specific signaling. Activation of the JNK pathway and the establishment of an IL-2/IL-2R autocrine loop have been shown to play a role in the negative selection of CD4(+)CD8(+) self-reacting thymocytes. In agreement, stimulation of murine thymocytes with ephrin-B1 not only blocked anti-CD3-induced CD25 up-regulation and IL-2 production, but also inhibited TCR-mediated apoptosis. Thus, EphB6 may play an important role in regulating thymocyte differentiation and modulating responses of mature T cells. 相似文献
2.
《Journal of receptor and signal transduction research》2013,33(5):337-346
It is well accepted that G protein-coupled receptors (GPCRs) arrange into dimers or higher-order oligomers that may modify various functions of GPCRs. GPCR-type purinergic receptors (i.e. adenosine and P2Y receptors) tend to form heterodimers with GPCRs not only of the different families but also of the same purinergic receptor families, leading to alterations in functional properties. In the present review, we focus on current knowledge of the formation of heterodimers between metabotropic purinergic receptors that activate novel functions in response to extracellular nucleosides/nucleotides, revealing that the dimerization seems to be employed for ‘fine-tuning’ of purinergic signaling. Thus, the relationship between adenosine and adenosine triphosphate is likely to be more and more intimate than simply being a metabolite of the other. 相似文献
3.
G蛋白偶联受体是体内最大的受体超家族,它们参与调节生物体内多种生理功能与病理过程。G蛋白偶联受体的分子内构象变化与G蛋白的偶联以及受体的二聚化等是G蛋白偶联受体激活的重要基本过程。借助于单分予研究手段,在G蛋白偶联受体激活方面取得了重要进展。本文将就这些方面进行简要的综述。 相似文献
4.
Cassandra A Boguth Puja Singh Chih-chin Huang John J G Tesmer 《The EMBO journal》2010,29(19):3249-3259
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs. 相似文献
5.
The G protein-coupled receptor GPR4 suppresses ERK activation in a ligand-independent manner 总被引:4,自引:0,他引:4
Bektas M Barak LS Jolly PS Liu H Lynch KR Lacana E Suhr KB Milstien S Spiegel S 《Biochemistry》2003,42(42):12181-12191
The lysophospholipids, lysophosphatidic acid, sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC), are bioactive lipid molecules that regulate diverse biological processes. Although the specific G protein-coupled receptors for lysophosphatidic acid and sphingosine-1-phosphate have been well-characterized, much less is known of the SPC receptors. It has been reported that ovarian cancer G protein-coupled receptor 1 (OGR1) is a high affinity receptor for SPC, and its closely related homologue GPR4 is a high affinity receptor for SPC with low affinity for lysophosphatidylcholine (LPC). However, in a functional assay to examine the specificity of ligand binding, we found that neither SPC nor LPC, or other related lysophospholipids, induced internalization of GPR4 from the plasma membrane. In agreement, these lysolipids also did not induce translocation of beta-arrestin2-GFP from the cytosol to the plasma membrane in GPR4 expressing cells. However, when these cells were cotransfected with G protein-coupled receptor kinase 2, in the absence of added ligands, beta-arrestin2-GFP accumulated in cytoplasmic vesicles, reminiscent of vesicular labeling usually observed after agonist stimulation of GPCRs. In addition, neither SPC nor LPC stimulated the binding of GTPgammaS to membranes prepared from GPR4 expressing cells and did not activate ERK1/2. Surprisingly, enforced expression of GPR4 inhibited activation of ERK1/2 induced by several stimuli, including SPC, sphingosine-1-phosphate, and even EGF. Collectively, our results suggest that SPC and LPC are not the ligands for GPR4 and that this receptor may constitutively inhibit ERK1/2 activation. 相似文献
6.
The internalization of G protein-coupled receptors is regulated by several important proteins that act in concert to finely control this complex cellular process. Here, we have applied the RNA interference approach to demonstrate that ADP-ribosylation factor 6 (ARF6) is essential for the endocytosis of a broad variety of receptors. Reduction of endogenous expression of ARF6 in HEK 293 cells resulted in a correlated inhibition of the beta(2) -adrenergic receptor internalization previously characterized as being sequestered via the clathrin-coated vesicle pathway. Furthermore, other receptors internalizing via this endocytic route, namely the angiotensin type 1 receptor and the vasopressin type 2 receptor, were also impaired in their ability to be sequestered when levels of endogenous ARF6 in cells were reduced. Interestingly, endocytosis of the endothelin type B receptor, characterized as being internalized via the caveolae pathway, was also markedly inhibited in ARF6-depleted cells. In contrast, internalization of the vasoactive intestinal peptide receptor was unaffected by reduced levels of ARF6. Finally, internalization of the acetylcholine-muscarinic type 2 receptor via the non-clathrin-coated vesicle pathway was also inhibited in ARF6-depleted cells. Taken together, our results demonstrate that ARF6 proteins play an essential role in the internalization process of most G protein-coupled receptors regardless of the endocytic route being utilized. However, this phenomenon is not general. In some cases, another ARF isoform or other proteins may be essential to regulate the endocytic process. 相似文献
7.
Gainetdinov RR Bohn LM Sotnikova TD Cyr M Laakso A Macrae AD Torres GE Kim KM Lefkowitz RJ Caron MG Premont RT 《Neuron》2003,38(2):291-303
Brain dopaminergic transmission is a critical component in numerous vital functions, and its dysfunction is involved in several disorders, including addiction and Parkinson's disease. Responses to dopamine are mediated via G protein-coupled dopamine receptors (D1-D5). Desensitization of G protein-coupled receptors is mediated via phosphorylation by members of the family of G protein-coupled receptor kinases (GRK1-GRK7). Here we show that GRK6-deficient mice are supersensitive to the locomotor-stimulating effect of psychostimulants, including cocaine and amphetamine. In addition, these mice demonstrate an enhanced coupling of striatal D2-like dopamine receptors to G proteins and augmented locomotor response to direct dopamine agonists both in intact and in dopamine-depleted animals. The present study indicates that postsynaptic D2-like dopamine receptors are physiological targets for GRK6 and suggests that this regulatory mechanism contributes to central dopaminergic supersensitivity. 相似文献
8.
Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation 总被引:3,自引:0,他引:3
Décaillot FM Befort K Filliol D Yue S Walker P Kieffer BL 《Nature structural biology》2003,10(8):629-636
The high resolution structure of rhodopsin has greatly enhanced current understanding of G protein-coupled receptor (GPCR) structure in the off-state, but the activation process remains to be clarified. We investigated molecular mechanisms of delta-opioid receptor activation without a preconceived structural hypothesis. Using random mutagenesis of the entire receptor, we identified 30 activating point mutations. Three-dimensional modeling revealed an activation path originating from the third extracellular loop and propagating through tightly packed helices III, VI and VII down to a VI-VII cytoplasmic switch. N- and C-terminal determinants also influence receptor activity. Findings for this therapeutically important receptor may apply to other GPCRs that respond to diffusible ligands. 相似文献
9.
10.
The evolutionary preservation of reactive oxygen species in innate immunity underscores the important roles these constituents play in immune cell activity and as signaling intermediates. In an effort to exploit these pathways to achieve control of aberrant immune activation we demonstrate that modulation of redox status suppresses cell proliferation and production of IL-2, IFN-gamma, TNF-alpha, and IL-17 in two robust CD8 T-cell-dependent in vitro mouse models: (1) response to alloantigen in an mixed leukocyte reaction and (2) CD8 T cell receptor transgenic OT-1 response to cognate peptide (SIINFEKL). To correlate these findings with cytotoxic lymphocyte (CTL) function we performed cytotoxicity assays and found that redox modulation diminishes the ability of alloantigen-specific and antigen-specific OT-1 CTLs to kill their corresponding antigen-expressing target cells. To further examine the mechanisms of redox-mediated repression of CTL target cell lysis, we analyzed the expression of the effector molecules IFN-gamma, perforin, and granzyme B and the degranulation marker CD107a (LAMP-1). In both models, redox modulation reduced the expression of these effector components by at least fivefold. These results demonstrate that redox modulation quells the CD8 T cell response to alloantigen and the T cell receptor transgenic CD8 T cell response to its cognate antigen by inhibiting proliferation, proinflammatory cytokine synthesis, and CTL effector mechanisms. 相似文献
11.
Penela P Murga C Ribas C Salcedo A Jurado-Pueyo M Rivas V Aymerich I Mayor F 《Archives of physiology and biochemistry》2008,114(3):195-200
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors and other plasma membrane receptors stimulated by chemotactic messengers. On top of that, GRK2 has been reported to interact with a variety of signal transduction proteins related to cell migration such as MEK, Akt, PI3Kgamma or GIT. Interestingly, the levels of expression and activity of this kinase are altered in a number of inflammatory disorders (as rheumatoid arthritis or multiple sclerosis), thus suggesting that it may play an important role in the onset or development of these pathologies. This review summarizes the mechanisms involved in the control of GRK2 expression and function and highlights novel functional interactions of this protein that might help to explain how altered GRK2 levels affects cell migration in different cell types and pathological settings. 相似文献
12.
13.
Spehr J Gelis L Osterloh M Oberland S Hatt H Spehr M Neuhaus EM 《The Journal of biological chemistry》2011,286(15):13184-13192
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ. 相似文献
14.
The role of G beta gamma and domain interfaces in the activation of G protein-coupled receptor kinase 2 总被引:1,自引:0,他引:1
Lodowski DT Barnhill JF Pyskadlo RM Ghirlando R Sterne-Marr R Tesmer JJ 《Biochemistry》2005,44(18):6958-6970
In response to extracellular signals, G protein-coupled receptors (GPCRs) catalyze guanine nucleotide exchange on Galpha subunits, enabling both activated Galpha and Gbetagamma subunits to target downstream effector enzymes. One target of Gbetagamma is G protein-coupled receptor kinase 2 (GRK2), an enzyme that initiates homologous desensitization by phosphorylating activated GPCRs. GRK2 consists of three distinct domains: an RGS homology (RH) domain, a protein kinase domain, and a pleckstrin homology (PH) domain, through which it binds Gbetagamma. The crystal structure of the GRK2-Gbetagamma complex revealed that the domains of GRK2 are intimately associated and left open the possibility for allosteric regulation by Gbetagamma. In this paper, we report the 4.5 A structure of GRK2, which shows that the binding of Gbetagamma does not induce large domain rearrangements in GRK2, although small rotations of the RH and PH domains relative to the kinase domain are evident. Mutation of residues within the larger domain interfaces of GRK2 generally leads to diminished expression and activity, suggesting that these interfaces are important for stability and remain intact upon activation of GRK2. Geranylgeranylated Gbetagamma, but not a soluble mutant of Gbetagamma, protects GRK2 from clostripain digestion at a site within its kinase domain that is 80 A away from the Gbetagamma binding site. Equilibrium ultracentrifugation experiments indicate that neither abnormally large detergent micelles nor protein oligomerization can account for the observed protection. The Gbetagamma-mediated binding of GRK2 to CHAPS micelles or lipid bilayers therefore appears to rigidify the kinase domain, perhaps by encouraging stable contacts between the RH and kinase domains. 相似文献
15.
A conformational trigger for activation of a G protein by a G protein-coupled receptor 总被引:2,自引:0,他引:2
G protein-coupled receptors (GPCRs) are a family of seven transmembrane helical proteins that initiate a cellular response to an environmental signal. Once activated by an extracellular signal, GPCRs trigger the intracellular signal transduction cascade by activating a heterotrimeric G protein. The interaction between the G protein and the receptor, which triggers the signal transduction, is the focus of intense interest. Three-dimensional structures of the ground state of only one GPCR, rhodopsin, are currently available, but since the G protein cannot bind to this structure, these structures did not lead to an understanding of the activation process. The recent publication of an excited state structure for the same GPCR (and comparison to the ground state structures), in conjunction with other recent biochemical data, provides new insight into G protein activation. We find that the structure data and the biochemical data, for the first time, point to a specific mode of interaction between the G protein and the receptor. Furthermore, we find that transducin (G(t)) must alter its conformation to bind to the activated receptor; the "lock and key" fit heretofore expected is likely not the correct model. We suggest that a conformational distortion, driven by the energy of binding, is induced in G(t) when it binds to the activated receptor. The conformational change in turn enables the exchange of GTP for GDP and the dissociation of the subunits. This is an example of "induced fit" originally proposed by Koshland to describe enzyme-substrate interactions. 相似文献
16.
Dunford PJ O'Donnell N Riley JP Williams KN Karlsson L Thurmond RL 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(11):7062-7070
Histamine is an important inflammatory mediator that is released in airways during an asthmatic response. However, current antihistamine drugs are not effective in controlling the disease. The discovery of the histamine H4 receptor (H4R) prompted us to reinvestigate the role of histamine in pulmonary allergic responses. H4R-deficient mice and mice treated with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in infiltrating lung eosinophils and lymphocytes and decreases in Th2 responses. Ex vivo restimulation of T cells showed decreases in IL-4, IL-5, IL-13, IL-6, and IL-17 levels, suggesting that T cell functions were disrupted. In vitro studies indicated that blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production and limits their ability to induce Th2 responses in T cells. This work suggests that the H4R can modulate allergic responses via its influence on T cell activation. The study expands the known influences of histamine on the immune system and highlights the therapeutic potential of H4R antagonists in allergic conditions. 相似文献
17.
Marco E Foucaud M Langer I Escrieut C Tikhonova IG Fourmy D 《The Journal of biological chemistry》2007,282(39):28779-28790
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands. 相似文献
18.
The higher-order structure of G protein-coupled receptors (GPCRs) in membranes may involve dimerization and formation of even larger oligomeric complexes. Here, we have investigated the organization of the prototypical GPCR rhodopsin in its native membrane by electron and atomic force microscopy (AFM). Disc membranes from mice were isolated and observed by AFM at room temperature. In all experimental conditions, rhodopsin forms structural dimers organized in paracrystalline arrays. A semi-empirical molecular model for the rhodopsin paracrystal is presented validating our previously reported results. Finally, we compare our model with other currently available models describing the supramolecular structure of GPCRs in the membrane. 相似文献
19.
The luteinizing hormone/choriogonadotropin hormone receptor (LH/CG R) signals to regulate ovulation, corpus luteum formation, and fetal survival during pregnancy. Agonist binding to the LH/CG R is poorly reversible, emphasizing the importance of a cellular mechanism to temper signaling by a potentially persistently active receptor. Like other G protein-coupled receptors (GPCRs), signaling by this receptor is modulated by its binding of an arrestin. We have identified ADP ribosylation factor 6 (ARF6) as a protein whose activation state is regulated by the LH/CG R and which functions to regulate the availability of plasma membrane-docked arrestin 2 to this receptor. We hypothesize that ARF6 might also serve GPCRs other than the LH/CG R to regulate the availability of arrestin 2 for receptor desensitization. 相似文献
20.
Hubbard VM Valdor R Patel B Singh R Cuervo AM Macian F 《Journal of immunology (Baltimore, Md. : 1950)》2010,185(12):7349-7357
Macroautophagy is a highly conserved mechanism of lysosomal-mediated protein degradation that plays a key role in maintaining cellular homeostasis by recycling amino acids, reducing the amount of damaged proteins, and regulating protein levels in response to extracellular signals. We have found that macroautophagy is induced after effector T cell activation. Engagement of the TCR and CD28 results in enhanced microtubule-associated protein 1 light chain 3 (LC3) processing, increased numbers of LC3-containing vesicles, and increased LC3 flux, indicating active autophagosome formation and clearance. The autophagosomes formed in stimulated T cells actively fuse with lysosomes to degrade their cargo. Using a conditional KO mouse model where Atg7, a critical gene for macroautophagy, is specifically deleted in T cells, we have found that macroautophagy-deficient effector Th cells have defective IL-2 and IFN-γ production and reduced proliferation after stimulation, with no significant increase in apoptosis. We have found that ATP generation is decreased when autophagy is blocked, and defects in activation-induced cytokine production are restored when an exogenous energy source is added to macroautophagy-deficient T cells. Furthermore, we present evidence showing that the nature of the cargo inside autophagic vesicles found in resting T cells differs from the cargo of autophagosomes in activated T cells, where mitochondria and other organelles are selectively excluded. These results suggest that macroautophagy is an actively regulated process in T cells that can be induced in response to TCR engagement to accommodate the bioenergetic requirements of activated T cells. 相似文献