首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A site in the Epstein-Barr virus (EBV) transforming protein LMP1 that constitutively associates with the tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein TRADD to mediate NF-kappaB and c-Jun N-terminal kinase activation is critical for long-term lymphoblastoid cell proliferation. We now find that LMP1 signaling through TRADD differs from TNFR1 signaling through TRADD. LMP1 needs only 11 amino acids to activate NF-kappaB or synergize with TRADD in NF-kappaB activation, while TNFR1 requires approximately 70 residues. Further, LMP1 does not require TRADD residues 294 to 312 for NF-kappaB activation, while TNFR1 requires TRADD residues 296 to 302. LMP1 is partially blocked for NF-kappaB activation by a TRADD mutant consisting of residues 122 to 293. Unlike TNFR1, LMP1 can interact directly with receptor-interacting protein (RIP) and stably associates with RIP in EBV-transformed lymphoblastoid cell lines. Surprisingly, LMP1 does not require RIP for NF-kappaB activation. Despite constitutive association with TRADD or RIP, LMP1 does not induce apoptosis in EBV-negative Burkitt lymphoma or human embryonic kidney 293 cells. These results add a different perspective to the molecular interactions through which LMP1, TRADD, and RIP participate in B-lymphocyte activation and growth.  相似文献   

2.
Stimulation of tumor necrosis factor receptor 1 (TNFR1) can initiate several cellular responses, including apoptosis, which relies on caspases, necrotic cell death, which depends on receptor-interacting protein kinase 1 (RIP1), and NF-kappaB activation, which induces survival and inflammatory responses. The TNFR-associated death domain (TRADD) protein has been suggested to be a crucial signal adaptor that mediates all intracellular responses from TNFR1. However, cells with a genetic deficiency of TRADD are unavailable, precluding analysis with mature immune cell types. We circumvented this problem by silencing TRADD expression with small interfering RNA. We found that TRADD is required for TNFR1 to induce NF-kappaB activation and caspase-8-dependent apoptosis but is dispensable for TNFR1-initiated, RIP1-dependent necrosis. Our data also show that TRADD and RIP1 compete for recruitment to the TNFR1 signaling complex and the distinct programs of cell death. Thus, TNFR1-initiated intracellular signals diverge at a very proximal level by the independent association of two death domain-containing proteins, RIP1 and TRADD. These single transducers determine cell fate by triggering NF-kappaB activation, apoptosis, and nonapoptotic death signals through separate and competing signaling pathways.  相似文献   

3.
Activated tumor necrosis factor alpha (TNF-alpha) receptor 1 (TNFR1) recruits TNFR1-associated death domain protein (TRADD), which in turn triggers two opposite signaling pathways leading to caspase activation for apoptosis induction and NF-kappaB activation for antiapoptosis gene upregulation. Here we show that Stat1 is involved in the TNFR1-TRADD signaling complex, as determined by employing a novel antibody array screening method. In HeLa cells, Stat1 was associated with TNFR1 and this association was increased with TNF-alpha treatment. TNFR1 signaling factors TRADD and Fas-associated death domain protein (FADD) were also found to interact with Stat1 in a TNF-alpha-dependent process. Our in vitro recombinant protein-protein interaction studies demonstrated that Stat1 could directly interact with TNFR1 and TRADD but not with FADD. Interaction between Stat1 and receptor-interacting protein (RIP) or TNFR-associated factor 2 (TRAF2) was not detected. Examination of Stat1-deficient cells showed an apparent increase in TNF-alpha-induced TRADD-RIP and TRADD-TRAF2 complex formation, while interaction between TRADD and FADD was unaffected. As a consequence, TNF-alpha-mediated I-kappaB degradation and NF-kappaB activation were markedly enhanced in Stat1-deficient cells, whereas overexpression of Stat1 in 293T cells blocked NF-kappaB activation by TNF-alpha. Thus, Stat1 acts as a TNFR1-signaling molecule to suppress NF-kappaB activation.  相似文献   

4.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

5.
6.
Kieser A 《Biological chemistry》2008,389(10):1261-1271
The pro-apoptotic tumor necrosis factor (TNF)-receptor 1-associated death domain protein (TRADD) was initially identified as the central signaling adapter molecule of TNF-receptor 1 (TNFR1). Upon stimulation with the pro-inflammatory cytokine TNFalpha, TRADD is recruited to the activated TNFR1 by direct interaction between the death domains of both molecules. TRADD mediates TNFR1 activation of NF-kappaB and c-Jun N-terminal kinase (JNK), as well as caspase-dependent apoptosis. Surprisingly, TRADD is also recruited by latent membrane protein 1 (LMP1), the major oncoprotein of the human Epstein-Barr tumor virus. By mimicking a constitutively active receptor, LMP1 is essential for B-cell transformation by the virus, activating NF-kappaB, phosphatidylinositol 3-kinase, JAK/STAT and mitogen-activated protein kinase signaling. In contrast to TNFR1, LMP1's interaction with TRADD is independent of a functional death domain. The unique structure of the LMP1-TRADD complex dictates an unusual type of TRADD-dependent NF-kappaB signaling and subverts TRADD's potential to induce apoptosis. This article provides an overview of TNFR1 and LMP1 signal transduction with a focus on TRADD's functions in apoptotic and transforming signaling, incorporating recent results from TRADD RNAi and knockout studies.  相似文献   

7.
The death domain and death effector domain are two common motifs that mediate protein-protein interactions between components of cell death signaling complexes. The mechanism by which these domains engage their binding partners has been explored by extensive mutagenesis of two death adaptors, FADD and TRADD, suggesting that a death adaptor can discriminate its intended binding partners from other proteins harboring similar motifs. Death adaptors are found to utilize one of two topologically conserved surfaces for protein-protein interaction, whether that partner is another adaptor or its cognate receptor. These surfaces are topologically related to the interaction between death domains observed in the x-ray crystal structure of the Drosophila adaptor Tube bound to Pelle kinase. Comparing the topology of protein-protein interactions for FADD complexes to TRADD complexes reveals that FADD uses a Tube-like surface in each of its death motifs to engage either CD95 or TRADD. TRADD reverses these roles, employing a Pelle-like surface to interact with either receptor TNFR1 or adaptor FADD. Since death adaptors display a Tube-like or Pelle-like preference for engaging their binding partners, Tube/Pelle-like pairing provides a mechanism for death adaptor discrimination of death receptors.  相似文献   

8.
TNFR1 associated death domain protein (TRADD) contains an N-terminal TRAF binding domain and a C-terminal death domain along with nuclear import and export sequences that cause shuttling between the cytoplasm and nucleus. The death domain of TRADD contains the nuclear import sequence and expression of the core death domain (nuclear TRADD) results in exclusive nuclear localization and activation of a distinct apoptotic pathway. Cytoplasmic TRADD activates apoptosis through Fas-associated death domain protein (FADD) and caspase-8 activation that was blocked by caspase inhibitors or dominant-negative FADD. These inhibitors did not inhibit death induced by nuclear TRADD, which could only be inhibited by combining caspase inhibitors and a serine protease inhibitor. The pathway activated by nuclear TRADD requires caspase-9 catalytic activity. However, apoptosis activating factor deficiency confers only partial protection from death. This pathway represents an alternate means by which TRADD can regulate cell death independently of FADD and caspase-8 that occurs from the nucleus rather than the cytoplasm.  相似文献   

9.
The Epstein-Barr virus latent membrane protein 1 (LMP1) binds tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) and the TNFR-associated death domain protein (TRADD). Moreover, it induces NF-kappaB and the c-Jun N-terminal kinase 1 (JNK1) pathway. Thus, LMP1 appears to mimick the molecular functions of TNFR1. However, TNFR1 elicits a wide range of cellular responses including apoptosis, whereas LMP1 constitutes a transforming protein. Here we mapped the JNK1 activator region (JAR) of the LMP1 molecule. JAR overlaps with the TRADD-binding domain of LMP1. In contrast to TNFR1, LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. Consequently, the molecular function of TRADD in LMP1 signaling differs from its role in TNFR1 signal transduction. Whereas NF-kappaB activation by LMP1 was blocked by a dominant-negative TRADD mutant, LMP1 induces JNK1 independently of the TRADD death domain and TRAF2, which binds to TRADD. Further downstream, JNK1 activation by TNFR1 involves Cdc42, whereas LMP1 signaling to JNK1 is independent of p21 Rho-like GTPases. Although both LMP1 and TNFR1 interact with TRADD and TRAF2, the different topologies of the signaling complexes correlate with substantial differences between LMP1 and TNFR1 signal transduction to JNK1.  相似文献   

10.
Triggering tumor necrosis factor receptor-1 (TNFR1) induces apoptosis in various cell lines. In contrast, stimulation of TNFR1 in L929sA leads to necrosis. Inhibition of HSP90, a chaperone for many kinases, by geldanamycin or radicicol shifted the response of L929sA cells to TNF from necrosis to apoptosis. This shift was blocked by CrmA but not by BCL-2 overexpression, suggesting that it occurred through activation of procaspase-8. Geldanamycin pretreatment led to a proteasome-dependent decrease in the levels of several TNFR1-interacting proteins including the kinases receptor-interacting protein, inhibitor of kappa B kinase-alpha, inhibitor of kappa B kinase-beta, and to a lesser extent the adaptors NF-kappaB essential modulator and tumor necrosis factor receptor-associated factor 2. As a consequence, NF-kappa B, p38MAPK, and JNK activation were abolished. No significant decrease in the levels of mitogen-activated protein kinases, adaptor proteins TNFR-associated death domain and Fas-associated death domain, or caspase-3, -8, and -9 could be detected. These results suggest that HSP90 client proteins play a crucial role in necrotic signaling. We conclude that inhibition of HSP90 may alter the composition of the TNFR1 complex, favoring the caspase-8-dependent apoptotic pathway. In the absence of geldanamycin, certain HSP90 client proteins may be preferentially recruited to the TNFR1 complex, promoting necrosis. Thus, the availability of proteins such as receptor-interacting protein, Fas-associated death domain, and caspase-8 can determine whether TNFR1 activation will lead to apoptosis or to necrosis.  相似文献   

11.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

12.
Receptor-interacting protein kinase 1 (RIPK1) is an important component of the tumor necrosis factor receptor 1 (TNFR1) signaling pathway. Depending on the cell type and conditions, RIPK1 mediates MAPK and NF-κB activation as well as cell death. Using a mutant form of RIPK1 (RIPK1ΔID) lacking the intermediate domain (ID), we confirm the requirement of this domain for activation of these signaling events. Moreover, expression of RIPK1ΔID resulted in enhanced recruitment of caspase-8 to the TNFR1 complex II component Fas-associated death domain (FADD), which allowed a shift from TNF-induced necroptosis to apoptosis in L929 cells. Addition of the RIPK1 kinase inhibitor necrostatin-1 strongly reduced recruitment of RIPK1 and caspase-8 to FADD and subsequent apoptosis, indicating a role for RIPK1 kinase activity in apoptotic complex formation. Our study shows that RIPK1 has an anti-apoptotic function residing in its ID and demonstrates a cellular system as an elegant genetic model for RIPK1 kinase-dependent apoptosis that, in contrast to the Smac mimetic model, does not rely on depletion of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2).  相似文献   

13.
TRADD (TNFR1-associated death domain protein) was initially identified as an adaptor molecule that transduces the signal downstream of the TNFR1 (tumor necrosis factor receptor 1). TNFR1 belongs to the so-called death receptor (DR) family of receptors that depending on the context can induce either apoptosis or proliferation, as well as NF-κB and MAP kinase activation. The receptors of this group contain death domain (DD) that is necessary for the induction of apoptosis. This review summarizes the recent advances in the field of DR signaling and in particular the role of TRADD.  相似文献   

14.
Tumour necrosis factor receptor (TNFR)-associated death domain (TRADD) protein is a central adaptor in the TNFR1 signalling complex that mediates both cell death and inflammatory signals. Here, we report that Tradd deficiency in mice accelerated tumour formation in a chemical-induced carcinogenesis model independently of TNFR1 signalling. In vitro, primary cells lacking TRADD were less susceptible to HRas-induced senescence and showed a reduced level of accumulation of the p19(Arf) tumour suppressor protein. Our data indicate that TRADD shuttles dynamically from the cytoplasm into the nucleus to modulate the interaction between p19(Arf) and its E3 ubiquitin ligase ULF, thereby promoting p19(Arf) protein stability and tumour suppression. These results reveal a previously unknown tumour-suppressive role for nuclear TRADD, augmenting its long-established cytoplasmic functions in inflammatory and immune signalling cascades. Our findings also make an important contribution to the rapidly expanding field of p19(Arf) post-translational regulation.  相似文献   

15.
The tumor necrosis factor (TNF)-receptor 1–associated death domain protein (TRADD) mediates induction of apoptosis as well as activation of NF-κB by cellular TNF-receptor 1 (TNFR1). TRADD is also recruited by the latent membrane protein 1 (LMP1) oncoprotein of Epstein-Barr virus, but its role in LMP1 signaling has remained enigmatic. In human B lymphocytes, we have generated, to our knowledge, the first genetic knockout of TRADD to investigate TRADD's role in LMP1 signal transduction. Our data from TRADD-deficient cells demonstrate that TRADD is a critical signaling mediator of LMP1 that is required for LMP1 to recruit and activate I-κB kinase β (IKKβ). However, in contrast to TNFR1, LMP1-induced TRADD signaling does not induce apoptosis. Searching for the molecular basis for this observation, we characterized the 16 C-terminal amino acids of LMP1 as an autonomous and unique virus-derived TRADD-binding domain. Replacing the death domain of TNFR1 by LMP1′s TRADD-binding domain converts TNFR1 into a nonapoptotic receptor that activates NF-κB through a TRAF6-dependent pathway, like LMP1 but unlike wild-type TNFR1. Thus, the unique interaction of LMP1 with TRADD encodes the transforming phenotype of viral TRADD signaling and masks TRADD's pro-apoptotic function.  相似文献   

16.
Members of the death receptor family play a prominent role in developmental and pathological neuronal cell death. The death signal is transduced via interaction between the death domain of the receptor and an intracellular adapter, TRADD. We performed alanine-scanning mutagenesis of specific charged residues in the TR3 death domain to determine whether they play a crucial role in TR3-TR3 and TR3-TRADD interaction. Mutation of charged residues in the second and third helices of the TR3 death domain failed to perturb self-interaction or interaction with TRADD. These data suggest that despite some similarity between the death domains of TR3 and TNFR1 the nature of the interaction with TRADD differs from that reported for TNFR1.  相似文献   

17.
Regulatory roles and molecular signaling of TNF family members in osteoclasts   总被引:12,自引:0,他引:12  
Feng X 《Gene》2005,350(1):1-13
The tumor necrosis factor (TNF) family has been one of the most intensively studied families of proteins in the past two decades. The TNF family constitutes 19 members that mediate diverse biological functions in a variety of cellular systems. The TNF family members regulate cellular functions through binding to membrane-bound receptors belonging to the TNF receptor (TNFR) family. Members of the TNFR family lack intrinsic kinase activity and thus they initiate signaling by interacting intracellular signaling molecules such as TNFR associated factor (TRAF), TNFR associated death domain (TRADD) and Fas-associated death domain (FADD). In bone metabolism, it has been shown that numerous TNF family members including receptor activator of nuclear factor kappaB ligand (RANKL), TNF-alpha, Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) play pivotal roles in the differentiation, function, survival and/or apoptosis of osteoclasts, the principal bone-resorbing cells. These TNF family members not only regulate physiological bone remodeling but they are also implicated in the pathogenesis of various bone diseases such as osteoporosis and bone loss in inflammatory conditions. This review will focus on our current understanding of the regulatory roles and molecular signaling of these TNF family members in osteoclasts.  相似文献   

18.
Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor-1 (TNFR-1). TNFR-1-associated death domain (TRADD) protein is an adapter molecule that bridges the interaction between TNFR-1 and receptor-interacting serine/threonine-protein kinase 1 (RIP1). However, the molecular mechanism of the complex formation of these proteins has not yet been identified. Here, the binding among TNFR-1, TRADD, and RIP1 was identified using a GST pull-down assay and Biacore biosensor experiment. This study showed that structural characterization and formation of the death-signaling complex could be predicted using TNFR-1, TRADD, and RIP1. In addition, we found that the structure-based mutations of TNFR-1 (P367A and P368A), TRADD (F266A), and RIP1 (M637A and R638A) disrupted formation of the death domain (DD) complex and prevented stable interactions among those DDs.  相似文献   

19.
TNFR-associated death domain protein (TRADD) is a key effector protein of TNFR1 signaling. However, the role of TRADD in other death receptor (DR) signaling pathways, including DR3, has not been completely characterized. Previous studies using overexpression systems suggested that TRADD is recruited to the DR3 complex in response to the DR3 ligand, TNF-like ligand 1A (TL1A), indicating a possible role in DR3 signaling. Using T cells from TRADD knockout mice, we demonstrate in this study that the response of both CD4(+) and CD8(+) T cells to TL1A is dependent upon the presence of TRADD. TRADD knockout T cells therefore lack the appropriate proliferative response to TL1A. Moreover, in the absence of TRADD, both the stimulation of MAPK signaling and activation of NF-κB in response to TL1A are dramatically reduced. Unsurprisingly, TRADD is required for recruitment of receptor interacting protein 1 and TNFR-associated factor 2 to the DR3 signaling complex and for the ubiquitination of receptor interacting protein 1. Thus, our findings definitively establish an essential role of TRADD in DR3 signaling.  相似文献   

20.
Death domain (DD)-containing proteins are involved in both apoptosis and survival/proliferation signaling induced by activated death receptors. Here, a phylogenetic and structural analysis was performed to highlight differences in DD domains and their key regulatory interaction sites. The phylogenetic analysis shows that receptor DDs are more conserved than DDs in adaptors. Adaptor DDs can be subdivided into those that activate or inhibit apoptosis. Modeling of six homotypic DD interactions involved in the TNF signaling pathway implicates that the DD of RIP (Receptor interacting protein kinase 1) is capable of interacting with the DD of TRADD (TNFR1-associated death domain protein) in two different, exclusive ways: one that subsequently recruits CRADD (apoptosis/inflammation) and another that recruits NFkappaB (survival/proliferation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号