首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.  相似文献   

5.
CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd(2+), was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd(2+) tolerance of these cells. Yeast cells expressing the non-functional mutant Asp(398)Ala could grow on selective medium containing up to 100 microM Cd(2+), whereas those expressing the functional protein could not grow in the presence of 1 microM Cd(2+). The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd(2+) accumulation in the reticulum lumen. CadA is also known to transport Zn(2+), but Zn(2+) did not protect the cells against Cd(2+) poisoning. In the presence of 10 microM Cd(2+), transformed yeasts survived by rapid loss of their expression vector.  相似文献   

6.
1. A new mutant strain (AN228) of Escherichia coli K12, unable to couple phosphorylation to electron transport, has been isolated. The mutant allele (unc-405), in strain AN228, was found to map near the uncA and uncB genes at about minute 74 on the E. coli genome. 2. A transductant strain (AN285) carrying the unc-405 allele is similar to the uncA and uncB mutants described previously in that it is unable to grow on succinate, gives a low aerobic yield on limiting concentrations of glucose, has a normal rate of electron transport, is unable to couple phosphorylation to electron transport, and lacks ATP-dependent transhydrogenase activity. 3. Strain AN285 (unc-405) is similar to an uncA mutant, but different from an uncB mutant, in that it is unable to grow anaerobically in a glucose-mineral-salts medium, and membrane preparations do not have Mg(2+)-stimulated adenosine triphosphatase activity. 4. Strain AN285 (unc-405) does not form an aggregate analogous to the membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate found in normal cells. In this respect it differs from strain AN249 (uncA(-)), which forms an inactive membrane-bound Mg(2+)-stimulated adenosine triphosphatase aggregate.  相似文献   

7.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

8.
A gene cluster upstream of the arylsulfatase gene (atsA) in Pseudomonas aeruginosa was characterized and found to encode a putative ABC-type transporter, AtsRBC. Mutants with insertions in the atsR or atsB gene were unable to grow with hexyl-, octyl-, or nitrocatecholsulfate, although they grew normally with other sulfur sources, such as sulfate, methionine, and aliphatic sulfonates. AtsRBC therefore constitutes a general sulfate ester transport system, and desulfurization of aromatic and medium-chain-length aliphatic sulfate esters occurs in the cytoplasm. Expression of the atsR and atsBCA genes was repressed during growth with sulfate, cysteine, or thiocyanate. No expression of these genes was observed in the cysB mutant PAO-CB, and the ats genes therefore constitute an extension of the cys regulon in this species.  相似文献   

9.
10.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

11.
The HpMAL2 gene of the MAL gene cluster of Hansenula polymorpha codes for a permease similar to yeast maltose and alpha-glucoside transporters. Genomic disruption of HpMAL2 resulted in an inability of cells to grow on maltose, sucrose, trehalose, maltotriose and turanose, as well as a lack of p-nitrophenyl-alpha-D-glucopyranoside (PNPG) transport. PNPG uptake was competitively inhibited by all these substrates, with Ki values between 0.23 and 1.47 mM. Transport by HpMal2p was sensitive to pH and a protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP), revealing its energization by the proton gradient over the cell membrane. Although HpMAL2 was responsible for trehalose uptake, its expression was not induced during trehalose growth. A maltase disruption mutant did not grow on maltotriose and turanose, whereas it showed normal growth on trehalose, demonstrating the dispensability of maltase for intracellular hydrolysis of trehalose. In a Genolevures clone pBB0AA011B12, the promoter region and the N-terminal fragment of the putative transactivator of MAL genes is located adjacent to HpMAL2. A reporter gene assay showed that expression from that promoter was induced by maltose and sucrose, repressed by glucose, and derepressed during glycerol and trehalose growth. Therefore, we presume that the gene encodes a functional regulator.  相似文献   

12.
Escherichia coli K-12 and K-12 hybrid strains constructed to express a polysialic acid capsule, the K1 antigen, were able to efficiently use sialic acid as a sole carbon source. This ability was dependent on induction of at least two activities: a sialic acid-specific transport activity, and an aldolase activity specific for cleaving sialic acids. Induction over basal levels required sialic acid as the apparent inducer, and induction of both activities was repressed by glucose. Induction also required the intracellular accumulation of sialic acid, which could be either added exogenously to the medium or accumulated intracellularly through biosynthesis. Exogenous sialic acid appeared to be transported by an active mechanism that did not involve covalent modification of the sugar. Mutations affecting either the transport or degradation of sialic acid prevented its use as a carbon source and have been designated nanT and nanA, respectively. These mutations were located by transduction near min 69 on the E. coli K-12 genetic map, between argG and glnF. In addition to being unable to use sialic acid as a carbon source, aldolase-negative mutants were growth-inhibited by this sugar. Therefore, the intracellularly accumulated sialic acid was toxic in aldolase-deficient E. coli strains. The dual role of aldolase in dissimilating and detoxifying sialic acids is consistent with the apparent multiple controls on expression of this enzyme.  相似文献   

13.
Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression.  相似文献   

14.
15.
Effects of the structure of plasmids carrying the cloned delta-endotoxin gene (tox) ot Bacillus thuringiensis and of the culture media on the expression of the gene have been studied. The DNA region located upstream from the crystal protein gene promoter inhibited the expression of the tox gene in Escherichia coli cells, but enhanced the expression in Bacillus megaterium cells grown in LB medium. The upstream DNA region did not affect the tox gene expression when Bacillus megaterium cells were grown in SSM medium.  相似文献   

16.
A putative transport protein (Orf9) of alkaliphilic Bacillus pseudofirmus OF4 belongs to a transporter family (CPA-2) of diverse K+ efflux proteins and cation antiporters. Orf9 greatly increased the concentration of K+ required for growth of a K+ uptake mutant of Escherichia coli. The cytoplasmic K+ content of the cells was reduced, consistent with an efflux mechanism. Orf9-dependent translocation of K+ in E. coli is apparently bidirectional, since ammonium-sensitive uptake of K+ could be shown in K+ -depleted cells. The upstream gene product Orf8 has sequence similarity to a subdomain of KTN proteins that are associated with potassium-translocating channels and transporters; Orf8 modulated the transport capacities of Orf9. No Orf9-dependent K+(Na+)/H+ antiport activity was found in membrane vesicles. Nonpolar deletion mutants in the orf9 locus of the alkaliphile chromosome exhibited no K+ -related phenotype but showed profound phenotypes in medium containing high levels of amine-nitrogen. Their patterns of growth and ammonium content suggested a physiological role for the orf9 locus in bidirectional ammonium transport. Orf9-dependent ammonium uptake was observed in right-side-out membrane vesicles of the alkaliphile wild type and the mutant with an orf8 deletion. Uptake was proton motive force dependent and was inhibited by K+. Orf9 is proposed to be designated AmhT (ammonium homeostasis). Ammonium homeostasis is important in high-amine-nitrogen settings and is particularly crucial at high pH since cytosolic ammonium accumulation interferes with cytoplasmic pH regulation. Endospore formation in amino-acid-rich medium was significantly defective and germination was modestly defective in the orf9 and orf7-orf10 deletion mutants.  相似文献   

17.
Spontaneous mutants harboring the lacY gene on an F'-factor were isolated. Those mutants that failed to grow on 5 mM lactose minimal media plates were chosen for further study. The mutants showed striking mutations in the lactose carrier as well as in sugar selection properties during transport assays. DNA sequencing of the lacY gene of the mutants revealed the following mutations: M-1-I, R-144-W, G-370-C and a deletion of residues 387-392, located in helix 12 of the carrier. Transport studies indicated that ONPG transport ranged between 8 and 25% of normal for the M-1-I, G-370-C and D387-392 mutants and 51% of normal for the R-144-W mutant. The downhill transport of lactose was 2-fold greater than for melibiose in cells harboring the M-1-I mutation and 3-fold higher for cells with the G-370-C mutation. On the other hand, cells with the D387-392-deletion mutation showed no lactose downhill transport, but 47% melibiose transport. Accumulation of TMG, a lactose analog, was 3-fold higher than the accumulation of melibiose in cells with the G-370-C mutation. On the other hand, in cells with the D387-392 mutation, TMG accumulation was completely defective, whereas melibiose accumulation was 50-fold higher than that of TMG, indicating that one or more of these residues in helix 12 of the carrier play a role in the active transport of b-galactoside, but not a-galactoside sugars. Initial lactose downhill transport rates were too unreliable to obtain trustworthy kinetic data. TMG and melibiose accumulation activities were present, but severely reduced in the mutant containing the R144W mutation, confirming that Arg-144 is important for active transport. All transport data were normalized for expression levels. The results indicate that the affected residues play a role in dictating sugar specificity and transport in the lactose carrier. The results here are novel in that they represent mutations in unique locations along the lactose carrier protein. For example, the M-1-I mutation was located at the N-terminal cytoplasmic tail of the carrier. Furthermore, G-370-C was located in the periplasmic loop between helices 11 and 12, suggesting a role for residues in this loop in mediating sugar selection.  相似文献   

18.
Recent studies have begun to reveal that numerous fundamental metabolic pathways in bacteria are regulated by riboswitches residing within certain messenger RNAs. These riboswitches selectively bind metabolites and modulate gene expression in response to changing ligand concentrations. Previously, we provided evidence that the btuB mRNAs of Escherichia coli and Salmonella typhimurium each carry a coenzyme B12-dependent riboswitch that causes repressed translation of the encoded cobalamin-transport protein at elevated coenzyme concentrations. Herein, we use a phylogenetic analysis to define a consensus sequence and secondary structure model for the ligand- binding domain of this riboswitch class. RNA structures that conform to this model are widespread in both Gram-positive and Gram-negative organisms. In addition, we find that the 5'-untranslated region (5'-UTR) of the cobalamin biosynthesis (cob) operon of S.typhimurium carries an RNA motif that matches this consensus sequence. Biochemical and genetic characterization of this motif confirms that the RNA directly binds coenzyme B12, and that it likely serves as a genetic control element for regulating expression of the 25-gene operon for cobalamin production in this pathogen.  相似文献   

19.
20.
Direct protein extraction from animals is the only approach available to obtain caltrin, calcium transport inhibitor. Here we report the expression and purification of caltrin, previously shown to hinder the influx of calcium into epididymal spermatozoa. Cloning of the caltrin gene into the pCDNA3.1 V5/His-TOPO vector and the subsequent ligation of the caltrin-His sequence into the transfer vector pBacPAK9 allowed the expression of recombinant caltrin using the baculovirus expression vector system (BEVS). Recombinant His-tagged caltrin was purified utilising both nickel (II)-nitrilotriacetic acid (Ni(2+)-NTA) and cobalt (II)-carboxymethylaspartate (Co(2+)-CmAsp) immobilised metal affinity chromatography (IMAC). Using the BEVS, caltrin-His was identified in the supernatant and in the cell lysate, suggesting that caltrin is a secreted protein. Based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot results, purified recombinant caltrin-His was ascertained to be approximately 14.5kDa. Purification under the Co(2+) system yielded significantly purer protein samples when compared to the Ni(2+) system. Furthermore, Co(2+) was observed to bind the recombinant caltrin-His protein with higher efficiency and specificity and to yield a higher total protein concentration. Collectively, our results indicate that the Co(2+) system would be a better approach for purifying caltrin-His proteins than the Ni(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号