首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

2.
Thiamine pyrophosphate is a required coenzyme that contains a mechanistically important sulfur atom. In Salmonella enterica, sulfur is trafficked to both thiamine biosynthesis and 4-thiouridine biosynthesis by the enzyme ThiI using persulfide (R-S-S-H) chemistry. It was previously reported that a thiI mutant strain could grow independent of exogenous thiamine in the presence of cysteine, suggesting there was a second mechanism for sulfur mobilization. Data reported here show that oxidation products of cysteine rescue the growth of a thiI mutant strain by a mechanism that requires the transporter YdjN and the cysteine desulfhydrase CdsH. The data are consistent with a model in which sulfide produced by CdsH reacts with cystine (Cys-S-S-Cys), S-sulfocysteine (Cys-S-SO3), or another disulfide to form a small-molecule persulfide (R-S-S-H). We suggest that this persulfide replaced ThiI by donating sulfur to the thiamine sulfur carrier protein ThiS. This model describes a potential mechanism used for sulfur trafficking in organisms that lack ThiI but are capable of thiamine biosynthesis.  相似文献   

3.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

4.
A method is described to rapidly select and classify many independent near-UV irradiation-resistant Escherichia coli mutants, which include tRNA modification and RNA synthesis control mutants. One class of these mutants was found to be simultaneously deficient in thiamine biosynthesis and in the ability to modify uridine in tRNA to 4-thiouridine, known to be the target for near-UV irradiation. These mutants were found to be unable to make thiazole, a thiamine precursor. The addition of thiazole restores the thiamine deficiency but does not render the cells near-UV irradiation sensitive. In vitro studies on one of these mutants indicated a deficiency in protein factor C (nuvC), required for the 4-thiouridine modification of tRNA. In P1 transduction, the thiazole marker cotransduced with the histidine marker, which places the thiazole marker between 42 and 46 min on the E. coli chromosome map. Both thiamine production and 4-thiouridine production were resumed by 87% of the spontaneous reversions, suggesting a single-point mutation. Our results indicate that we have isolated nuvC mutants and that the nuvC polypeptide is involved in two functions, tRNA modification and thiazole biosynthesis.  相似文献   

5.
IscS, a cysteine desulfurase implicated in the repair of Fe-S clusters, was recently shown to act as a sulfurtransferase in the biosynthesis of 4-thiouridine (s(4)U) in tRNA (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568). In frame deletion of the iscS gene in Escherichia coli results in a mutant strain that lacks s(4)U in its tRNA. Assays of cell-free extracts isolated from the iscS(-) strain confirm the complete loss of tRNA sulfurtransferase activity. In addition to lacking s(4)U, the iscS(-) strain requires thiamin and nicotinic acid for growth in minimal media. The thiamin requirement can be relieved by the addition of the thiamin precursor 5-hydroxyethyl-4-methylthiazole, indicating that iscS is required specifically for thiazole biosynthesis. The growth rate of the iscS(-) strain is half that of the parent strain in rich medium. When the iscS(-) strain is switched from rich to minimal medium containing thiamin and nicotinate, growth is preceded by a considerable lag period relative to the parent strain. Addition of isoleucine results in a significant reduction in the duration of this lag phase. To examine the thiazole requirement, we have reconstituted the in vitro biosynthesis of ThiS thiocarboxylate, the ultimate sulfur donor in thiazole biosynthesis, and we show that IscS mobilizes sulfur for transfer to the C-terminal carboxylate of ThiS. ThiI, a known factor involved in both thiazole and s(4)U synthesis, stimulates this sulfur transfer step by 7-fold. Extracts from the iscS(-) strain show significantly reduced activity in the in vitro synthesis of ThiS thiocarboxylate. Transformation of the iscS(-) strain with an iscS expression plasmid complemented all of the observed phenotypic effects of the deletion mutant. Of the remaining two nifS-like genes in E. coli, neither can complement loss of iscS when each is overexpressed in the iscS(-) strain. Thus, IscS plays a significant and specific role at the top of a potentially broad sulfur transfer cascade that is required for the biosynthesis of thiamin, NAD, Fe-S clusters, and thionucleosides.  相似文献   

6.
ThiI is an enzyme common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. Comparison of the ThiI sequence with protein sequences in the data bases revealed that the Escherichia coli enzyme contains a C-terminal extension displaying sequence similarity to the sulfurtransferase rhodanese. Cys-456 of ThiI aligns with the active site cysteine residue of rhodanese that transiently forms a persulfide during catalysis. We investigated the functional importance of this sequence similarity and discovered that, like rhodanese, ThiI catalyzes the transfer of sulfur from thiosulfate to cyanide. Mutation of Cys-456 to alanine impairs this sulfurtransferase activity, and the C456A ThiI is incapable of supporting generation of 4-thiouridine in tRNA both in vitro and in vivo. We therefore conclude that Cys-456 of ThiI is critical for activity and propose that Cys-456 transiently forms a persulfide during catalysis. To accommodate this hypothesis, we propose a general mechanism for sulfur transfer in which the terminal sulfur of the persulfide first acts as a nucleophile and is then transferred as an equivalent of S(2-) rather than S(0).  相似文献   

7.
8.
The gene thiI encodes a protein (ThiI) that plays a role in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine, but the reaction catalyzed by ThiI remains undetermined. Based upon sequence alignments, ThiI shares a unique "P-loop" motif with the PPi synthetase family, four enzymes that catalyze adenylation and subsequent substitution of carbonyl oxygens. To test whether or not this motif is critical for ThiI function, the Asp in the motif was converted to Ala (D189A), and a screen for in vivo 4-thiouridine production revealed the altered enzyme to be inactive. Further scrutiny of sequence data and the crystal structures of two members of the PPi synthetase family implicated Lys321 in the proposed adenylation function of ThiI, and the critical nature of Lys321 has been demonstrated by site-directed mutagenesis and genetic screening. Our results, then, indicate that ThiI catalyzes the adenylation of a substrate at the expense of ATP, a narrowing of possible reactions that provides a strong new basis for deducing the early steps in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine.  相似文献   

9.
10.
Escherichia coli tRNA contains four naturally occurring nucleosides modified with sulfur. Cysteine is the intracellular sulfur source for each of these modified bases. We previously found that the iscS gene, a member of the nifS cysteine desulfurase gene family, is required for 4-thiouridine biosynthesis in E. coli. Since IscS does not bind tRNA, its role is the mobilization and distribution of sulfur to enzymes that catalyze the sulfur insertion steps. In addition to iscS, E. coli contains two other nifS homologs, csdA and csdB, each of which has cysteine desulfurase activity and could potentially donate sulfur for thionucleoside biosynthesis. Double csdA csdB and iscS csdA mutants were prepared or obtained, and all mutants were analyzed for thionucleoside content. It was found that unfractionated tRNA isolated from the iscS mutant strain contained <5% of the level of sulfur found in the parent strain. High-pressure liquid chromatography analysis of tRNA nuclease digests from the mutant strain grown in the presence of [(35)S]cysteine showed that only a small fraction of 2-thiocytidine was present, while the other thionucleosides were absent when cells were isolated during log phase. As expected, digests from the iscS mutant strain contained 6-N-dimethylallyl adenosine (i(6)A) in place of 6-N-dimethylallyl-2-methylthioadenosine and 5-methylaminomethyl uridine (mnm(5)U) instead of 5-methylaminomethyl-2-thiouridine. Prolonged growth of the iscS and iscS csdA mutant strains revealed a gradual increase in levels of 2-thiocytidine and 6-N-dimethylallyl-2-methylthioadenosine with extended incubation (>24 h), while the thiouridines remained absent. This may be due to a residual level of Fe-S cluster biosynthesis in iscS deletion strains. An overall scheme for thionucleoside biosynthesis in E. coli is discussed.  相似文献   

11.
tRNA from Salmonella enterica serovar Typhimurium contains five thiolated nucleosides, 2-thiocytidine (s(2)C), 4-thiouridine (s(4)U), 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U), 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U), and N-6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A). The levels of all of them are significantly reduced in cells with a mutated iscS gene, which encodes the cysteine desulfurase IscS, a member of the ISC machinery that is responsible for [Fe-S] cluster formation in proteins. A mutant (iscU52) was isolated that carried an amino acid substitution (S107T) in the IscU protein, which functions as a major scaffold in the formation of [Fe-S] clusters. In contrast to the iscS mutant, the iscU52 mutant showed reduced levels of only two of the thiolated nucleosides, ms(2)io(6)A (10-fold) and s(2)C (more than 2-fold). Deletions of the iscU, hscA, or fdx genes from the isc operon lead to a similar tRNA thiolation pattern to that seen for the iscU52 mutant. Unexpectedly, deletion of the iscA gene, coding for an alternative scaffold protein for the [Fe-S] clusters, showed a novel tRNA thiolation pattern, where the synthesis of only one thiolated nucleoside, ms(2)io(6)A, was decreased twofold. Based on our results, we suggest two principal distinct routes for thiolation of tRNA: (i) a direct sulfur transfer from IscS to the tRNA modifying enzymes ThiI and MnmA, which form s(4)U and the s(2)U moiety of (c)mnm(5)s(2)U, respectively; and (ii) an involvement of [Fe-S] proteins (an unidentified enzyme in the synthesis of s(2)C and MiaB in the synthesis of ms(2)io(6)A) in the transfer of sulfur to the tRNA.  相似文献   

12.
The enzyme ThiI is common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. We earlier noted the presence of a motif shared with sulfurtransferases, and we reported that the cysteine residue (Cys-456 of Escherichia coli ThiI) found in this motif is essential for activity (Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J., and Mueller, E. G. (2000) J. Biol. Chem. 275, 8283-8286). In light of that finding and the report of the involvement of the protein IscS in the reaction (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568), we proposed two mechanisms for the sulfur transfer mediated by ThiI, and both suggested possible involvement of the thiol group of another cysteine residue in ThiI. We have now substituted each of the cysteine residues with alanine and characterized the effect on activity in vivo and in vitro. Cys-108 and Cys-202 were converted to alanine with no significant effect on ThiI activity, and C207A ThiI was only mildly impaired. Substitution of Cys-344, the only cysteine residue conserved among all sequenced ThiI, resulted in the loss of function in vivo and a 2700-fold reduction in activity measured in vitro. We also examined the possibility that ThiI contains an iron-sulfur cluster or disulfide bonds in the resting state, and we found no evidence to support the presence of either species. We propose that Cys-344 forms a disulfide bond with Cys-456 during turnover, and we present evidence that a disulfide bond can form between these two residues in native ThiI and that disulfide bonds do form in ThiI during turnover. We also discuss the relevance of these findings to the biosynthesis of thiamin and iron-sulfur clusters.  相似文献   

13.
The cysteine desulfurase IscS in Salmonella enterica serovar Typhimurium is required for the formation of all four thiolated nucleosides in tRNA, which is thought to occur via two principally different biosynthetic pathways. The synthesis of 4-thiouridine (s(4)U) and 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) occurs by a transfer of sulfur from IscS via various proteins to the target nucleoside in the tRNA, and no iron-sulfur cluster protein participates, whereas the synthesis of 2-thiocytidine (s(2)C) and N(6)-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms(2)io(6)A) is dependent on iron-sulfur cluster proteins, whose formation and maintenance depend on IscS. Accordingly, inactivation of IscS should result in decreased synthesis of all thiolated nucleosides. We selected mutants defective either in the synthesis of a thiolated nucleoside (mnm(5)s(2)U) specific for the iron-sulfur protein-independent pathway or in the synthesis of a thiolated nucleoside (ms(2)io(6)A) specific for the iron-sulfur protein-dependent pathway. Although we found altered forms of IscS that influenced the synthesis of all thiolated nucleosides, consistent with the model, we also found mutants defective in subsets of thiolated nucleosides. Alterations in the C-terminal region of IscS reduced the level of only ms(2)io(6)A, suggesting that the synthesis of this nucleoside is especially sensitive to minor aberrations in iron-sulfur cluster transfer activity. Our results suggest that IscS has an intrinsic substrate specificity in how it mediates sulfur mobilization and/or iron-sulfur cluster formation and maintenance required for thiolation of tRNA.  相似文献   

14.
Escherichia coli has eight genes predicted to encode sulfurtransferases having the active site consensus sequence Cys-Xaa-Xaa-Gly. One of these genes, ybbB, is frequently found within bacterial operons that contain selD, the selenophosphate synthetase gene, suggesting a role in selenium metabolism. We show that ybbB is required in vivo for the specific substitution of selenium for sulfur in 2-thiouridine residues in E. coli tRNA. This modified tRNA nucleoside, 5-methylaminomethyl-2-selenouridine (mnm(5)se(2)U), is located at the wobble position of the anticodons of tRNA(Lys), tRNA(Glu), and tRNA(1)(Gln). Nucleoside analysis of tRNAs from wild-type and ybbB mutant strains revealed that production of mnm(5)se(2)U is lost in the ybbB mutant but that 5-methylaminomethyl-2-thiouridine, the mnm(5)se(2)U precursor, is unaffected by deletion of ybbB. Thus, ybbB is not required for the initial sulfurtransferase reaction but rather encodes a 2-selenouridine synthase that replaces a sulfur atom in 2-thiouridine in tRNA with selenium. Purified 2-selenouridine synthase containing a C-terminal His(6) tag exhibited spectral properties consistent with tRNA bound to the enzyme. In vitro mnm(5)se(2)U synthesis is shown to be dependent on 2-selenouridine synthase, SePO(3), and tRNA. Finally, we demonstrate that the conserved Cys(97) (but not Cys(96)) in the rhodanese sequence motif Cys(96)-Cys(97)-Xaa-Xaa-Gly is required for 2-selenouridine synthase in vivo activity. These data are consistent with the ybbB gene encoding a tRNA 2-selenouridine synthase and identifies a new role for the rhodanese homology domain in enzymes.  相似文献   

15.
ThiI is an enzyme responsible for the formation of the modified base S(4)U (4-thiouridine) found at position 8 in some prokaryotic tRNAs. This base acts as a sensitive trigger for the response mechanism to UV exposure, providing protection against its damaging effects. We present the crystal structure of Bacillus anthracis ThiI in complex with AMP, revealing an extended tripartite architecture in which an N-terminal ferredoxin-like domain (NFLD) connects the C-terminal catalytic PP-loop pyrophosphatase domain with a THUMP domain, an ancient predicted RNA-binding domain that is widespread in all kingdoms of life. We describe the structure of the THUMP domain, which appears to be unrelated to RNA-binding domains of known structure. Mapping the conserved residues of NFLD and the THUMP domain onto the ThiI structure suggests that these domains jointly form the tRNA-binding surface. The inaccessibility of U8 in the canonical L-shaped form of tRNA, and the existence of a glycine-rich linker joining the catalytic and RNA-binding moieties of ThiI suggest that structural changes may occur in both molecules upon binding.  相似文献   

16.
Kambampati R  Lauhon CT 《Biochemistry》2003,42(4):1109-1117
Thionucleosides are uniquely present in tRNA. In many organisms, tRNA specific for Lys, Glu, and Gln contain hypermodified 2-thiouridine (s(2)U) derivatives at wobble position 34. The s(2) group of s(2)U34 stabilizes anticodon structure, confers ribosome binding ability to tRNA and improves reading frame maintenance. Earlier studies have mapped and later identified the mnmA gene (formerly asuE or trmU) as required for the s(2)U modification in Escherichia coli. We have prepared a nonpolar deletion of the mnmA gene and show that it is not required for viability in E. coli. We also cloned mnmA from E. coli, and overproduced and purified the protein. Using a gel mobility shift assay, we show that MnmA binds to unmodified E. coli tRNA(Lys) with affinity in the low micromolar range. MnmA does not bind observably to the nonsubstrate E. coli tRNA(Phe). Corroborating this, tRNA(Glu) protected MnmA from tryptic digestion. ATP also protected MnmA from trypsinolysis, suggesting the presence of an ATP binding site that is consistent with analysis of the amino acid sequence. We have reconstituted the in vitro biosynthesis of s(2)U using unmodified E. coli tRNA(Glu) as a substrate. The activity requires MnmA, Mg-ATP, l-cysteine, and the cysteine desulfurase IscS. HPLC analysis of thiolated tRNA digests using [(35)S]cysteine confirms that the product of the in vitro reaction is s(2)U. As in the case of 4-thiouridine synthesis, purified IscS-persulfide is able to provide sulfur for in vitro s(2)U synthesis in the absence of cysteine. Small RNAs that represent the anticodon stem loops for tRNA(Glu) and tRNA(Lys) are substrates of comparable activity to the full length tRNAs, indicating that the major determinants for substrate recognition are contained within this region.  相似文献   

17.
4-Thiouridine (s4U) is a conserved modified nucleotide at position 8 of bacterial and archaeal tRNAs and plays a role in protecting cells from near-UV killing. Escherichia coli employs the following two enzymes for its synthesis: the cysteine desulfurase IscS, which forms a Cys persulfide enzyme adduct from free Cys; and ThiI, which adenylates U8 and transfers sulfur from IscS to form s4U. The C-terminal rhodanese-like domain (RLD) of ThiI is responsible for the sulfurtransferase activity. The mechanism of s4U biosynthesis in archaea is not known as many archaea lack cysteine desulfurase and an RLD of the putative ThiI. Using the methanogenic archaeon Methanococcus maripaludis, we show that deletion of ThiI (MMP1354) abolished the biosynthesis of s4U but not of thiamine. MMP1354 complements an Escherichia coli ΔthiI mutant for s4U formation, indicating that MMP1354 is sufficient for sulfur incorporation into s4U. In the absence of an RLD, MMP1354 uses Cys265 and Cys268 located in the PP-loop pyrophosphatase domain to generate persulfide and disulfide intermediates for sulfur transfer. In vitro assays suggest that S2− is a physiologically relevant sulfur donor for s4U formation catalyzed by MMP1354 (Km for Na2S is ∼1 mm). Thus, methanogenic archaea developed a strategy for sulfur incorporation into s4U that differs from bacteria; this may be an adaptation to life in sulfide-rich environments.  相似文献   

18.
Twelve genes involved in thiamin biosynthesis in prokaryotes have been identified and overexpressed. Of these, six are required for the thiazole biosynthesis (thiFSGH, thiI, and dxs), one is involved in the pyrimidine biosynthesis (thiC), one is required for the linking of the thiazole and the pyrimidine (thiE), and four are kinase genes (thiD, thiM, thiL, and pdxK). The specific reactions catalyzed by ThiEF, Dxs, ThiDM, ThiL, and PdxK have been reconstituted in vitro and ThiS thiocarboxylate has been identified as the sulfur source. The X-ray structures of thiamin phosphate synthase and 5-hydroxyethyl-4-methylthiazole kinase have been completed. The genes coding for the thiamin transport system (thiBPQ) have also been identified. Remaining problems include the cloning and characterization of thiK (thiamin kinase) and the gene(s) involved in the regulation of thiamin biosynthesis. The specific reactions catalyzed by ThiC (pyrimidine formation), and ThiGH and ThiI (thiazole formation) have not yet been identified. Received: 23 August 1998 / Accepted: 16 January 1999  相似文献   

19.
A selenium-containing nucleoside, 5-methylaminomethyl-2-selenouridine (mnm5se2U), is present in lysine- and glutamate-isoaccepting tRNA species of Escherichia coli. The synthesis of mnm5se2U is optimum (4 mol/100 mol tRNA) when selenium is present at about 1 microM concentration and is neither decreased by a high (8 mM) level of sulfur in the medium nor increased by excessive (10 or 100 microM) levels of selenium. Lysine- and glutamate-isoaccepting tRNA species that contain 5-methylaminomethyl-2-thiouridine (mnm5s2U) coexist with the seleno-tRNAs in E. coli cells and a reciprocal relationship between the mnm5se2U- and the mnm5s2U-containing species is maintained under a variety of growth conditions. The complete 5-methylaminomethyl side chain is not a prerequisite for introduction of selenium at the 2-position. In E. coli mutants deficient in the ability to synthesize the 5-methylaminomethyl substituent, both the 2-thiouridine and the corresponding 2-selenouridine derivatives of intermediate forms are accumulated. Broken cell preparations of E. coli synthesize mnm5se2U in tRNAs by an ATP-dependent process that appears to involve the replacement of sulfur in mnm5s2U with selenium.  相似文献   

20.
ThiI catalyzes the thio-introduction reaction to tRNA, and a truncated tRNA consisting of 39 nucleotides, TPHE39A, is the minimal RNA substrate for modification by ThiI from Escherichia coli. To examine the molecular basis of the tRNA recognition by ThiI, we have solved the crystal structure of TPHE39A, which showed that base pairs in the T-stem were almost completely disrupted, although those in the acceptor-stem were preserved. Gel shift assays and isothermal titration calorimetry experiments showed that ThiI can efficiently bind with not only tRNAPhe but also TPHE39A. Binding assays using truncated ThiI, i.e., N- and C-terminal domains of ThiI, showed that the N-domain can bind with both tRNAPhe and TPHE39A, whereas the C-domain cannot. These results indicated that the N-domain of ThiI recognizes the acceptor-stem region. Thermodynamic analysis indicated that the C-domain also affects RNA binding by its enthalpically favorable, but entropically unfavorable, contribution. In addition, circular dichroism spectra showed that the C-domain induced a conformation change in tRNAPhe. Based on these results, a possible RNA binding mechanism of ThiI in which the N-terminal domain recognizes the acceptor-stem region and the C-terminal region causes a conformational change of RNA is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号