首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liang F  Xin X  Hu Z  Xu J  Wei G  Qian X  Yang J  He H  Luo X 《植物学报(英文版)》2011,53(4):312-323
A dwarf mutant, designated LB4D, was obtained among the progeny of backcrosses to a wild rice introgression line. Genetic analysis of LB4D indicated that the dwarf phenotype was controlled by a single semidominant dwarfing gene, which was named LB4D. The mutants were categorized as dn-type dwarf mutants according to the pattern of internode reduction. In addition, gibberellin (GA) response tests showed that LB4D plants were neither deficient nor insensitive to GA. This study found that tiller formation by LB4D plants was decreased by 40% compared with the wild type, in contrast to other dominant dwarf mutants that have been identified, indicating that a different dwarfing mechanism might be involved in the LB4D dominant mutant. The reduction of plant height in F(1) plants ranged from 27.9% to 38.1% in different genetic backgrounds, showing that LB4D exerted a stronger dominant dwarfing effect. Using large F(2) and F(3) populations derived from a cross between heterozygous LB4D and the japonica cultivar Nipponbare, the LB4D gene was localized to a 46 kb region between the markers Indel 4 and Indel G on the short arm of chromosome 11, and four predicted genes were identified as candidates in the target region.  相似文献   

2.
水稻Dwarf1移码突变的新突变体鉴定   总被引:1,自引:0,他引:1  
Chen HX  Zhou CB  Xing YZ 《遗传》2011,33(4):397-403
从一批水稻品种"中花11"组织培养苗里分离到一个矮化突变株"C6PS",它的T2代群体株高呈现3:1分离。利用该群体矮化单株与"珍汕97"、"牡丹江8"构建2个F2群体F2(CZ)、F2(CM),两个群体中高株与矮株均呈现3:1分离,证明该性状变异为单基因控制。"C6PS"表现型与已经报道的Dwarf1隐性突变体"d1"相似,以D1附近标记RM430检测F2(CZ)群体基因型,结果显示群体表型与RM430基因型呈极显著相关(P=0.0001),将该基因初步定位于Dwarf1附近。对"C6PS"及"中花11"进行D1序列分析显示,突变株中D1基因在其第九个外显子与第九个内含子的剪接位点上发生6个碱基的缺失,根据缺失两侧序列设计C6PS-D1L/R标记,在T2代群体该标记与表型呈现共分离,表明"C6PS"是一种新的Dwarf1突变体。cDNA测序显示突变体d1基因转录产物发生26个碱基的缺失,导致移码产生终止突变,从而无法翻译出有功能的Gα蛋白,因此,它是一个Gα功能缺失突变体。叶倾斜度检测显示"C6PS"对油菜素内酯响应比野生型"中花11"弱。  相似文献   

3.
A semidwarf line of Indica rice, Xinguiai, was derived from the progeny of a cross between the double dwarf mutant Xinguiaishuangai and the wild-type variety Nanjing 6. The semidwarf phenotype was controlled by the semidwarf gene, sdg. The second sheath and shoot elongation responses of the dwarf mutant to exogenous gibberellin (GA3) showed that sdg was insensitive to gibberellin (GA), and its endogenous GAs content was higher than that in wild-type cultivars. The SDG gene was cloned by a map-based cloning method and sequencing analysis revealed that the coding region of sdg had a single nucleotide substitution resulting in a single amino acid change from alanine to threonine. A cleaved amplified polymorphic sequence marker was designed according to sequences from mutant and wild-type materials. This sequence marker could be used to distinguish wild types and mutants, and thus, could be used for molecular marker-assisted selection. The dwarf phenotype of the sdg mutant was restored to a normal phenotype by introducing the wild-type SDG gene. Rice transformation experiments and GUS staining demonstrated that the SDG gene was predominantly expressed in vegetative organs.  相似文献   

4.
Monocots and dicots have diverged for 120 million years. The floral morpha of cereals isunique and much different from that of dicot plants. Nevertheless, it has been found that most genes controlling flower development share a conserved sequence called MADS-box[1]. Therefore,it is likely that monocots and dicots could have similar basic characteristics of flower developmentbut the mechanisms of genetic regulation for flowering induction and floral differentiation might be different[2,3]. Du…  相似文献   

5.
A dwarf mutant of broad bean ( Vicia faba L.), the variety Rinrei, has been created by γ -ray irradiation. Rinrei is characterized by dark green leaves and by reduced plant length, internode and petiole length, shoot weight, and number of branches. Genetic analysis of hybrids between Rinrei and two wild-type lines indicated that these characteristics are controlled by a single recessive gene. The phenotype of Rinrei was restored to that of the wild type by application of brassinolide, but not by GA3. Qualitative and quantitative analysis by gas chromatography–mass spectrometry indicated that 24-methylenecholesterol and isofucosterol accumulated in Rinrei to levels more than 30 times higher than in the wild type. In contrast, Rinrei had lower than wild-type levels of campesterol, sitosterol and brassinosteroids. Therefore, Rinrei is a brassinosteroid-deficient mutant defective in sterol C-24 reduction. The gene was tentatively designated as brassinosteroid deficient dwarf 1 , bdd1 , which seems to be a homologue of Arabidopsis dwf1 ( dim , cbb1 ) and pea lkb .  相似文献   

6.
Maize (Zea mays L.) Dwarf8-1 (D8-1) is an andromonoecious dwarf mutant proposed to be involved in gibberellin (GA) reception (Fujioka et al. 1988b; Harberd and Freeling 1989). The mutant D8-1 is dominant and GA-nonresponsive (Phinney 1956). We show by map position and similarity of phenotype that five additional dwarf mutants are D8 alleles. We show by map position and similarity of phenotype that a second andromonoecious dwarf mutant, D9-1, defines a duplicate gene. Maize D9-1 and each dominant D8 allele specify a different plant stature, from very mild to very severe dwarfism. Plants of D9-1 and all dominant D8 alleles, except D8-1591, were GA-nonresponsive when treated with 7500 nmol GA3. The behavior of the mild dwarf D8-1591 was unique in that a small but significant growth response was detected (37% for D8-1591 vs. 130% for the wild type) when treated with 7500 nmol GA3. These results establish that all dwarf genotypes, except D8-1591, in one dose set a maximum limit on plant growth and block the normal response to GA. When treated with the GA-synthesis inhibitor paclobutrazol, plants of all dwarf genotypes and wild-type siblings were severely dwarfed. Plants of all dwarf genotypes treated with the GA-synthesis inhibitor paclobutrazol and GA3 were returned to their normal dwarf phenotype. Dominant dwarfing, delayed flowering, increased tillering, and anther development in the ear are characteristic features of D9-1 and all D8 alleles. The GA-synthesis-deficient dwarfs also have these characteristic features. We discuss the function of the wild-type gene product in the context of the observed results.Abbreviations D8 Dwarf8 - D9 Dwarf9 - GA(n) gibberellin A(n) - GA3 gibberellic acid - MNL Maize Genetics Cooperation Newsletter - NIL near-isogenic lines - RFLP restriction fragment length polymorphism - WT wild type This work was supported, in part, by a National Science Foundation Plant Postdoctoral Fellowship to R.G.W., by grants from NIH and ICI Seeds to M.F., the NSF Center for Plant Developmental Biology and the California Agriculture Experiment Station. Much of the work was done in the laboratory of Tim Helentjaris and was supported by a grant from Pioneer Hi-Bred Int'l. The generous gifts of the dominant dwarfing mutants from M.G. Neuffer and O.E. Nelson Jr. are gratefully acknowledged.  相似文献   

7.
Zelitch I 《Plant physiology》1990,93(4):1521-1524
Experiments are described further indicating that O2-resistant photosynthesis observed in a tobacco (Nicotiana tabacum) mutant with enhanced catalase activity is associated with decreased photorespiration under conditions of high photorespiration relative to net photosynthesis. The effects on net photosynthesis of (a) increasing O2 concentrations from 1% to 42% at low CO2 (250 microliters CO2 per liter), and (b) of increasing O2 concentrations from 21% to 42% at high CO2 (500 microliters CO2 per liter) were investigated in M6 progeny of mutant and wild-type leaf discs. The mutant displayed a progressive increase in net photosynthesis relative to wild type with increasing O2 and the faster rate at 42% O2 was completely reversed on returning to 21% O2. The photosynthetic rate by the mutant was similar to wild type in 21% and 42% O2 at 500 microliters CO2 per liter, and a faster rate by the mutant was restored on returning to 250 microliters CO2 per liter. The results are consistent with a lowered release of photorespiratory CO2 by the mutant because greater catalase activity inhibits the chemical decarboxylation of α-keto acids by peroxisomal H2O2. Higher catalase activity was observed in the tip and middle regions of expanding leaves than in the basal area. On successive selfing of mutant plants with enhanced catalase activity, the percent of plants with this phenotype increased from 60% in M4 progeny to 85% in M6 progeny. An increase was also observed in the percent of plants with especially high catalase activity (averaging 1.54 times wild type) on successive selfings suggesting that homozygosity for enhanced catalase activity was being approached.  相似文献   

8.
A mutant of spikelet differentiation in rice called frizzle panicle (fzp) was discovered in the progeny of a cross between Oryza sativa ssp. indica cv. V20B and cv. Hua1B. The mutant exhibits normal plant morphology but has apparently fewer tillers. The most striking change in fzp is that its spikelet differentiation is completely blocked, with unlimited subsequent rachis branches generated from the positions where spikelets normally develop in wild-type plants. Genetic analysis suggests that fzp is controlled by a single recessive gene, which is temporarily named fzp (t). Based on its mutant phenotype, fzp (t) represents a key gene controlling spikelet differentiation. Some F2 mutant plants derived from various genetic background appeared as the "middle type", suggesting that the action of fzp (t) is influenced by the presence of redundant, modifier or interactive genes. By using simple sequence repeat (SSR) markers and bulked segregant analysis (BSA) method, fzp (t) gene was mapped in the terminal region of the long arm of chromosome 7, with RM172 and RM248 on one side, 3.2 cM and 6.4 cM from fzp (t), and RM18 and RM234 on the other side, 23.1 cM and 26.3 cM from fzp(t), respectively. These results will facilitate the positional cloning and function studies of the gene.  相似文献   

9.
Zelitch I 《Plant physiology》1990,92(2):352-357
The increase in net photosynthesis in M4 progeny of an O2-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O2 has been confirmed and further investigated. Self-pollination of an M3 mutant produced M4 progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O2-resistant photosynthesis. About 25% of the F1 progeny of reciprocal crosses between the same M3 mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO2 as a percent of net photosynthesis in CO2-free 21% O2 and 36% less in CO2-free 42% O2 compared with wild type. The mutant leaf tissue also released less 14CO2 per [1-14C]glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O2-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O2 where the stoichiometry of CO2 release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H2O2.  相似文献   

10.
We characterized a rice dwarf mutant, ebisu dwarf (d2). It showed the pleiotropic abnormal phenotype similar to that of the rice brassinosteroid (BR)-insensitive mutant, d61. The dwarf phenotype of d2 was rescued by exogenous brassinolide treatment. The accumulation profile of BR intermediates in the d2 mutants confirmed that these plants are deficient in late BR biosynthesis. We cloned the D2 gene by map-based cloning. The D2 gene encoded a novel cytochrome P450 classified in CYP90D that is highly similar to the reported BR synthesis enzymes. Introduction of the wild D2 gene into d2-1 rescued the abnormal phenotype of the mutants. In feeding experiments, 3-dehydro-6-deoxoteasterone, 3-dehydroteasterone, and brassinolide effectively caused the lamina joints of the d2 plants to bend, whereas more upstream compounds did not cause bending. Based on these results, we conclude that D2/CYP90D2 catalyzes the steps from 6-deoxoteasterone to 3-dehydro-6-deoxoteasterone and from teasterone to 3-dehydroteasterone in the late BR biosynthesis pathway.  相似文献   

11.
12.
Pea rms6 mutants exhibit increased basal branching   总被引:3,自引:0,他引:3  
Our studies on two branching mutants of pea ( Pisum sativum L.) have identified a further Ramosus locus , Rms6, with two recessive or partially recessive mutant alleles: rms6-1 (type line S2-271) and rms6-2 (type line K586). Mutants rms6-1 and rms6-2 were derived from dwarf and tall cultivars, Solara and Torsdag, respectively. The rms6 mutants are characterized by increased branching from basal nodes. In contrast, mutants rms1 through rms5 have increased branching from both basal and aerial (upper stem) nodes. Buds at the cotyledonary node of wild-type (WT) plants remain dormant but in rms6 plants these buds were usually released from dormancy. Their growth was either subsequently inhibited, sometimes even prior to emergence above ground, or they grew into secondary stems. The mutant phenotype was strongest for rms6-1 on the dwarf background. Although rms6-2 had a weak single-mutant phenotype, the rms3-1 rms6-2 double mutant showed clear transgression and an additive branching phenotype, with a total lateral length almost 2-fold greater than rms3-1 and nearly 5-fold greater than rms6-2 . Grafting studies between WT and rms6-1 plants demonstrated the primary action of Rms6 may be confined to the shoot. Young WT and rms6-1 shoots had similar auxin levels, and decapitated plants had a similar magnitude of response to applied auxin. Abscisic acid levels were elevated 2-fold at node 2 of young rms6-1 plants. The Rms6 locus mapped to the R to Gp segment of linkage group V (chromosome 3). The rms6 mutants will be useful for basic research and also have possible agronomical value.  相似文献   

13.
Genome sequencing reveals agronomically important loci in rice using MutMap   总被引:11,自引:0,他引:11  
The majority of agronomic traits are controlled by multiple genes that cause minor phenotypic effects, making the identification of these genes difficult. Here we introduce MutMap, a method based on whole-genome resequencing of pooled DNA from a segregating population of plants that show a useful phenotype. In MutMap, a mutant is crossed directly to the original wild-type line and then selfed, allowing unequivocal segregation in second filial generation (F(2)) progeny of subtle phenotypic differences. This approach is particularly amenable to crop species because it minimizes the number of genetic crosses (n = 1 or 0) and mutant F(2) progeny that are required. We applied MutMap to seven mutants of a Japanese elite rice cultivar and identified the unique genomic positions most probable to harbor mutations causing pale green leaves and semidwarfism, an agronomically relevant trait. These results show that MutMap can accelerate the genetic improvement of rice and other crop plants.  相似文献   

14.
The spontaneous, single-gene dominant, pea ( Pisum sativum L.) mutant bushy is characterised by short, thin stems, tiny leaves and a proliferation of basal lateral branches. We symbolised the dominant mutant allele bsh and the recessive wild-type allele BSH . Some effects were very large, e.g. the reduction in internode length was around 10-fold in pure mutant plants. The effect on branching was qualitative under our conditions as the wild-type did not branch and the mutant branched extensively. Analysis of epidermal cells indicated the reduction in internode length arose principally from a reduction in cell length. The bushy mutation also altered root morphology with a reduction in the number and length of lateral roots. Time to first open flower was increased but node of flower initiation was not affected. In a few cases, bushy plants died before producing an open flower even though tiny abortive flower buds were produced in the upper leaf axils. In pure mutant plants, individual seed weight was reduced by 30%, number of seeds per pod was reduced 3-fold, and seed number per plant was reduced 4-fold. However, pod size was essentially normal for a given seed content, and the flowers were fertile and of normal structure. Grafting studies showed the primary action of the bushy mutation occurred in the shoot. In summary, the reduced cell and shoot elongation, loss of apical dominance and a primary action in the shoot, all point toward auxin deficiency (or perceived deficiency) as a possible cause of the bushy phenotype. The overall characteristics of bushy make it a useful mutant for research on plant development.  相似文献   

15.
A dwarf mutant, dw arf 2 (dw2), was isolated from sunflower (Helianthus annuus). The most obvious alterations of dw2 plants were the lack of stem growth, reduced size of leaves, petioles and flower organs, retarded flower development. Pollen and ovules were produced but the filaments failed to extrude the anthers from the corolla. The dw2 phenotype was mainly because of reduced cell size. In dw2 leaves, the dark-green color was not so much due to higher pigment content, but was correlated with a changed leaf morphology. The mutant responded to the application of bioactive gibberellins (GAs). The levels of ent-7α-hydroxykaurenoic acid, GA(19), GA(20) and GA(1) in dw2?seedlings were severely decreased relative to those in its wild type (WT). ent-Kaurenoic acid was actively converted to ent-7α-hydroxykaurenoic acid in WT plants but quite poorly in dw2 plants. All together these data suggested that the dw2 mutation severely reduced the flux through the biosynthetic pathway leading to active GAs by hampering the conversion of ent-kaurenoic acid to GA(12). Two ent-kaurenoic acid oxidase (KAO) genes were identified. HaKAO1 was expressed everywhere in sunflower organs, while HaKAO2 was mainly expressed in roots. We demonstrated that a DNA deletion in HaKAO1 of dw2 generated aberrant mRNA-splicing, causing a premature stop codon in the amino acid sequence. In dw2 calli, Agrobacterium-mediated transfer of WT HaKAO1 cDNA restored the WT endogenous levels of GAs. In segregating BC(1) progeny, the deletion co-segregated with the dwarf phenotype. The deletion was generated near to a breakpoint of a more complex chromosome rearrangement.  相似文献   

16.
A chimeric plant was observed in the F2 generation of a cross between a mutant cultivar, Ife BPC, and a germplasm line, TVu 2, in cowpea, Vigna unguiculata (L.) Walp. The chimeric plant had four lateral branches, one of which was intensely variegated, while the others were mostly green with few white sectors. F3 progeny from the intensely variegated branch of this plant were all variegated, while seed derived from the mostly green branches produced only green progeny. In subsequent generations, the descendants of the variegated branch bred true for the variegated trait, while those of the mostly green branches were also true-breeding for green colour. No pure-green or pure-white shoots were observed in any of the variegated plants examined in this study. Consequently, no pure-green or pure-white seedlings were produced from seeds harvested from the variegated plants. The results of reciprocal crosses between variegated and normal green plants indicate that variegation is inherited in a strictly uniparental maternal fashion. This is the first report of a cytoplasmically inherited mutation affecting foliage colour in cowpea. Received: 10 March 2000 / Accepted: 16 May 2000  相似文献   

17.
Crop-to-wild hybridization has the potential to introduce beneficial traits into wild populations. Gene flow from genetically engineered crops, in particular, can transfer genes coding for traits such as resistance to herbicides, insect herbivores, disease, and environmental stress into wild plants. Cultivated sunflower (Helianthus annuus) hybridizes spontaneously with wild/weedy populations (also H. annuus), but little is known about the relative fitness of F1 hybrids. In order to assess the ease with which crop-to-wild introgression can proceed, we compared characteristics of F1 wild-crop progeny with those of purely wild genotypes. Two nontransgenic, cultivated varieties were crossed with wild plants from three different regions-Texas, Kansas, and North Dakota. Seed burial experiments in the region of origin showed that wild-crop seeds had somewhat higher germination rates (less dormancy) than wild seeds from Kansas and North Dakota, while no differences were seen in seeds from Texas. Progeny from each type of cross were grown in outdoor pots in Ohio and in a weedy field in Kansas to quantify lifetime fecundity and flowering phenology. Flowering periods of hybrid and wild progeny overlapped considerably, especially in plants from North Dakota and Texas, suggesting that these hybrids are very likely to backcross with wild plants. In general, hybrid plants had fewer branches, flower heads, and seeds than wild plants, but in two crosses the fecundity of hybrids was not significantly different from that of purely wild plants. In Ohio, wild-crop hybrids from North Dakota appeared to be resistant to a rust that infected 53% of the purely wild progeny, indicating a possible benefit of "traditional" crop genes. In summary, our results suggest that F1 wild-crop hybrids had lower fitness than wild genotypes, especially when grown under favorable conditions, but the F1 barrier to the introgression of crop genes is quite permeable.  相似文献   

18.
Kim YS  Park S  Kang K  Lee K  Back K 《Planta》2011,233(2):251-260
Transgenic rice plants overexpressing a rice tyrosine decarboxylase (TyDC) exhibited a dwarf phenotype with a high level of tyramine accumulation. The height of transgenic rice was reduced on average to 35% of the wild-type height, whereas the number of tillers increased to 190% that of wild type. When judged by cellular distribution of tyramine and tyramine derivatives, the level of tyramine in soluble and insoluble fractions was higher than that of tyramine derivatives such as 4-coumaroyltyramine (CT) in the transgenic rice plants, suggesting that tyramine rather than its derivatives was a causative compound triggering the dwarf phenotype. Microscopic observation revealed that cell size in the transgenic lines was maintained, with a slightly irregular arrangement in the leaf mesophyll cells. When wild-type rice seeds were grown in the presence of tyramine, rice seedlings also showed stunted phenotypes in a dose-dependent manner. When these stunted seedlings were employed to measure the degree of cellular proliferation by bromodeoxyuridine incorporation, only small numbers of cells were found to retain labeled nuclei in shoot tips compared with the untreated control. These results show that the dwarf phenotype associated with tyramine accumulation in transgenic rice plants is attributable to a reduction in cell number rather than cell size. In addition, our dwarf phenotype caused by tyramine was not closely associated with known dwarf genes such as D88.  相似文献   

19.
The function of a putative glycosyltransferase (At2g35100) was investigated in Arabidopsis (Arabidopsis thaliana). The protein is predicted to be a type 2 membrane protein with a signal anchor. Two independent mutant lines with T-DNA insertion in the ARABINAN DEFICIENT 1 (ARAD1) gene were analyzed. The gene was shown to be expressed in all tissues but particularly in vascular tissues of leaves and stems. Analysis of cell wall polysaccharides isolated from leaves and stems showed that arabinose content was reduced to about 75% and 46%, respectively, of wild-type levels. Immunohistochemical analysis indicated a specific decrease in arabinan with no change in other pectic domains or in glycoproteins. The cellular structure of the stem was also not altered. Isolated rhamnogalacturonan I from mutant tissues contained only about 30% of the wild-type amount of arabinose, confirming the specific deficiency in arabinan. Linkage analysis showed that the small amount of arabinan present in mutant tissue was structurally similar to that of the wild type. Transformation of mutant plants with the ARAD1 gene driven by the 35S promoter led to full complementation of the phenotype, but none of the transformants had more arabinan than the wild-type level. The data suggest that ARAD1 is an arabinan alpha-1,5-arabinosyltransferase. To our knowledge, the identification of other L-arabinosyltransferases has not been published.  相似文献   

20.
Summary A RAPD marker specific to the dwarf off-type (hereafter known as dwarf) from micropropagation of Cavendish banana (Musa spp. AAA) cultivars New Guinea Cavendish and Williams was identified following an analysis of 57 normal (true-to-type) and 59 dwarf plants generated from several different micropropagation events. Sixty-six random decamer primers were used in the initial screen, of which 19 (28.8%) revealed polymorphisms between normal and dwarf plants. Primer OPJ-04 (5'-CCGAACACGG-3') was found to amplify an approx. 1.5 kb band which was consistently present in all normal but absent in all dwarf plants of both cultivars. Reliable detection of dwarf plants was achieved using this marker, providing the only available means ofin vitro detection of dwarfs. The use of this marker could facilitate early detection and elimination of dwarfs from batches of micropropagated bananas, and may be a useful tool in determining what factors in the tissue culture process lead to this off type production.Other micropropagation-induced RAPD polymorphisms were observed but were not associated with the dwarf trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号