首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although it is generally recognized that cystic fibrosis transmembrane conductance regulator (CFTR) contains a PSD-95/Disc-large/ZO-1 (PDZ)-binding motif at its COOH terminus, the identity of the PDZ domain protein(s) that interact with CFTR is uncertain, and the functional impact of this interaction is not fully understood. By using human airway epithelial cells, we show that CFTR associates with Na(+)/H(+) exchanger (NHE) type 3 kinase A regulatory protein (E3KARP), an EBP50/NHE regulatory factor (NHERF)-related PDZ domain protein. The PDZ binding motif located at the COOH terminus of CFTR interacts preferentially with the second PDZ domain of E3KARP, with nanomolar affinity. In contrast to EBP50/NHERF, E3KARP is predominantly localized (>95%) in the membrane fractions of Calu-3 and T84 cells, where CFTR is located. Moreover, confocal immunofluorescence microscopy of polarized Calu-3 monolayers shows that E3KARP and CFTR are co-localized at the apical membrane domain. We also found that ezrin associates with E3KARP in vivo. Co-expression of CFTR with E3KARP and ezrin in Xenopus oocytes potentiated cAMP-stimulated CFTR Cl(-) currents. These results support the concept that E3KARP functions as a scaffold protein that links CFTR to ezrin. Since ezrin has been shown previously to function as a protein kinase A anchoring protein, we suggest that one function served by the interaction of E3KARP with both ezrin and CFTR is to localize protein kinase A in the vicinity of the R-domain of CFTR. Since ezrin is also an actin-binding protein, the formation of a CFTR.E3KARP.ezrin complex may be important also in stabilizing CFTR at the apical membrane domain of airway cells.  相似文献   

2.
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, generally not moving beyond 100-200 nm. However, CFTR became mobile over micrometer distances after 1) truncations of the carboxy terminus, which contains a C-terminal PDZ (PSD95/Dlg/ZO-1) binding motif; 2) blocking PDZ binding by C-terminal green fluorescent protein fusion; 3) disrupting CFTR association with actin by expression of a mutant EBP50/NHERF1 lacking its ezrin binding domain; or 4) skeletal disruption by latrunculin. CFTR also became mobile when the cytoskeletal adaptor protein binding capacity was saturated by overexpressing CFTR or its C terminus. Our data demonstrate remarkable and previously unrecognized immobilization of CFTR in the plasma membrane and provide direct evidence that C-terminal coupling to the actin skeleton via EBP50/ezrin is responsible for its immobility.  相似文献   

3.
Polarization of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel to the apical plasma membrane in epithelial cells is critical for vectorial chloride transport. Previously, we reported that the C terminus of CFTR constitutes a PDZ-interacting domain that is required for CFTR polarization to the apical plasma membrane and interaction with the PDZ domain-containing protein EBP50 (NHERF). PDZ-interacting domains are typically composed of the C-terminal three to five amino acids, which in CFTR are QDTRL. Our goal was to identify the key amino acid(s) in the PDZ-interacting domain of CFTR with regard to its apical polarization, interaction with EBP50, and ability to mediate transepithelial chloride secretion. Point substitution of the C-terminal leucine (Leu at position 0) with alanine abrogated apical polarization of CFTR, interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane, and chloride secretion. Point substitution of the threonine (Thr at position -2) with alanine or valine had no effect on the apical polarization of CFTR, but reduced interaction between CFTR and EBP50, efficient expression of CFTR in the apical membrane as well as chloride secretion. By contrast, individual point substitution of the other C-terminal amino acids (Gln at position -4, Asp at position -3 and Arg at position -1) with alanine had no effect on measured parameters. We conclude that the PDZ-interacting domain, in particular the leucine (position 0) and threonine (position -2) residues, are required for the efficient, polarized expression of CFTR in the apical plasma membrane, interaction of CFTR with EBP50, and for the ability of CFTR to mediate chloride secretion. Mutations that delete the C terminus of CFTR may cause cystic fibrosis because CFTR is not polarized, complexed with EBP50, or efficiently expressed in the apical membrane of epithelial cells.  相似文献   

4.
5.
Secretory diarrhea is the leading cause of infectious diarrhea in humans. Secretory diarrhea may be caused by binding of heat-stable enterotoxins to the intestinal receptor guanylyl cyclase C (GCC). Activation of GCC catalyzes the formation of cGMP, initiating a signaling cascade that opens the cystic fibrosis transmembrane conductance regulator chloride channel at the apical cell surface. To identify proteins that regulate the trafficking or function of GCC, we used the unique COOH terminus of GCC as the "bait" to screen a human intestinal yeast two-hybrid library. We identified a novel protein, IKEPP (intestinal and kidney-enriched PDZ protein) that associates with the COOH terminus of GCC in biochemical assays and by co-immunoprecipitation. IKEPP is expressed in the intestinal epithelium, where it is preferentially accumulated at the apical surface. The GCC-IKEPP interaction is not required for the efficient targeting of GCC to the apical cell surface. Rather, the association with IKEPP significantly inhibits heat-stable enterotoxin-mediated activation of GCC. Our findings are the first to identify a regulatory protein that associates with GCC to modulate the catalytic activity of the enzyme and provides new insights in mechanisms that regulate GCC activity in response to bacterial toxin.  相似文献   

6.
Wang S  Yue H  Derin RB  Guggino WB  Li M 《Cell》2000,103(1):169-179
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes a chloride channel protein that belongs to the superfamily of ATP binding cassette (ABC) transporters. Phosphorylation by protein kinase A in the presence of ATP activates the CFTR-mediated chloride conductance of the apical membranes. We have identified a novel hydrophilic CFTR binding protein, CAP70, which is also concentrated on the apical surfaces. CAP70 consists of four PDZ domains, three of which are capable of binding to the CFTR C terminus. Linking at least two CFTR molecules via cytoplasmic C-terminal binding by either multivalent CAP70 or a bivalent monoclonal antibody potentiates the CFTR chloride channel activity. Thus, the CFTR channel can be switched to a more active conducting state via a modification of intermolecular CFTR-CFTR contact that is enhanced by an accessory protein.  相似文献   

7.
We identified a novel cystic fibrosis transmembrane conductance regulator (CFTR)-associating, PDZ domain-containing protein, CAL (CFTR associated ligand) containing two predicted coiled-coiled domains and one PDZ domain. The PDZ domain of CAL binds to the C terminus of CFTR. Although CAL does not have any predicted transmembrane domains, CAL is associated with membranes mediated by a region containing the coiled-coil domains. CAL is located primarily at the Golgi apparatus, co-localizing with trans-Golgi markers and is sensitive to Brefeldin A treatment. Immunoprecipitation experiments suggest that CAL exists as a multimer. Overexpression of CAL reduces CFTR chloride currents in mammalian cells and decreases expression, rate of insertion and half-life of CFTR in the plasma membrane. The Na(+)/H(+) exchanger regulatory factor, NHE-RF, a subplasma membrane PDZ domain protein, restores cell surface expression of CFTR and chloride currents. In addition, NHE-RF inhibits the binding of CAL to CFTR. CAL modulates the surface expression of CFTR. CAL favors retention of CFTR within the cell, whereas NHE-RF favors surface expression by competing with CAL for the binding of CFTR. Thus, the regulation of CFTR in the plasma membrane involves the dynamic interaction between at least two PDZ domain proteins.  相似文献   

8.
Disorganized ion transport caused by hypo- or hyperfunctioning of the cystic fibrosis transmembrane conductance regulator (CFTR) can be detrimental and may result in life-threatening diseases such as cystic fibrosis or secretory diarrhea. Thus, CFTR is controlled by elaborate positive and negative regulations for an efficient homeostasis. It has been shown that expression and activity of CFTR can be regulated either positively or negatively by PDZ (PSD-95/discs large/ZO-1) domain-based adaptors. Although a positive regulation by PDZ domain-based adaptors such as EBP50/NHERF1 is established, the mechanisms for negative regulation of the CFTR by Shank2, as well as the effects of multiple adaptor interactions, are not known. Here we demonstrate a physical and physiological competition between EBP50-CFTR and Shank2-CFTR associations and the dynamic regulation of CFTR activity by these positive and negative interactions using the surface plasmon resonance assays and consecutive patch clamp experiments. Furthermore whereas EBP50 recruits a cAMP-dependent protein kinase (PKA) complex to CFTR, Shank2 was found to be physically and functionally associated with the cyclic nucleotide phosphodiesterase PDE4D that precludes cAMP/PKA signals in epithelial cells and mouse brains. These findings strongly suggest that balanced interactions between the membrane transporter and multiple PDZ-based adaptors play a critical role in the homeostatic regulation of epithelial transport and possibly the membrane transport in other tissues.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel expressed at the apical plasma membrane. It has been proposed that the C-terminal PDZ binding motif of CFTR is required for its apical membrane targeting and that PDZ-domain interactions may tether CFTR to the actin cytoskeleton via soluble proteins including EBP50/NHERF1 and ezrin. We measured the diffusional mobility of human CFTR in the plasma membrane of Madin-Darby canine kidney cells by photobleaching of green fluorescent protein (GFP)-CFTR chimeras. After bleaching by a focused laser beam, GFP-CFTR fluorescence in the bleached membrane region recovered to approximately 90% of its initial level, indicating that nearly all of the CFTR was mobile. The GFP-CFTR diffusion coefficient (D) was 0.99 +/- 0.09 x 10(-10) cm2/s at 37 degrees C, similar to that of other membrane proteins. GFP-CFTR diffusion was not altered by protein kinase A or C activators but was blocked by paraformaldehyde and filipin. CFTR mutants lacking functional PDZ-binding domains (GFPCFTR-DeltaTRL and GFP-CFTR-DeltaTRA) were also mobile with D significantly increased by approximately 60% compared with GFP-CFTR. However, GFP-CFTR, GFP-CFTR-Delta TRL, and GFP-CFTR-DeltaTRA had similar mobilities (D approximately 12 x 10(-10) cm2/s) at the endoplasmic reticulum in brefeldin A-treated cells. Agents that modulate the actin cytoskeleton (cytochalasin D and jasplakinolide) altered the plasma membrane mobility of CFTR but not CFTR- DeltaTRL. EBP50 (NHERF1), a PDZ domain-containing protein that interacts with the C terminus of CFTR, diffused freely in the cytoplasm with a diffusion coefficient of 0.9 +/- 0.1 x 10(-7) cm2/s. EBP50 diffusion increased by approximately 2-fold after deletion of its ezrin-binding domain. These results indicate that wild-type CFTR is not tethered statically at the plasma membrane but that its diffusion is dependent on PDZ-domain interactions and an intact actin skeleton. PDZ-domain interactions of CFTR are thus dynamic and occur on a time scale of seconds or faster.  相似文献   

10.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed at the apical surface of epithelia. Although the regulation of CFTR by protein kinases is well documented, channel deactivation by phosphatases is not well understood. We find that the serine/threonine phosphatase PP2A can physically associate with the CFTR COOH terminus. PP2A is a heterotrimeric phosphatase composed of a catalytic subunit and two divergent regulatory subunits (A and B). The cellular localization and substrate specificity of PP2A is determined by the unique combination of A and B regulatory subunits, which can give rise to at least 75 different enzymes. By mass spectrometry, we identified the exact PP2A regulatory subunits associated with CFTR as Aalpha and B'epsilon and find that the B'epsilon subunit binds CFTR directly. PP2A subunits localize to the apical surface of airway epithelia and PP2A phosphatase activity co-purifies with CFTR in Calu-3 cells. In functional assays, inhibitors of PP2A block rundown of basal CFTR currents and increase channel activity in excised patches of airway epithelia and in intact mouse jejunum. Moreover, PP2A inhibition in well differentiated human bronchial epithelial cells results in a CFTR-dependent increase in the airway surface liquid. Our data demonstrate that PP2A is a relevant CFTR phosphatase in epithelial tissues. Our results may help reconcile differences in phosphatase-mediated channel regulation observed for different tissues and cells. Furthermore, PP2A may be a clinically relevant drug target for CF, which should be considered in future studies.  相似文献   

11.
Mutations in the chloride channel cystic fibrosis transmembrane regulator (CFTR) cause cystic fibrosis, a genetic disorder characterized by defects in CFTR biosynthesis, localization to the cell surface, or activation by regulatory factors. It was discovered recently that surface localization of CFTR is stabilized by an interaction between the CFTR N terminus and the multidomain cytoskeletal protein filamin. The details of the CFTR-filamin interaction, however, are unclear. Using x-ray crystallography, we show how the CFTR N terminus binds to immunoglobulin-like repeat 21 of filamin A (FlnA-Ig21). CFTR binds to β-strands C and D of FlnA-Ig21 using backbone-backbone hydrogen bonds, a linchpin serine residue, and hydrophobic side-chain packing. We use NMR to determine that the CFTR N terminus also binds to several other immunoglobulin-like repeats from filamin A in vitro. Our structural data explain why the cystic fibrosis-causing S13F mutation disrupts CFTR-filamin interaction. We show that FlnA-Ig repeats transfected into cultured Calu-3 cells disrupt CFTR-filamin interaction and reduce surface levels of CFTR. Our findings suggest that filamin A stabilizes surface CFTR by anchoring it to the actin cytoskeleton through interactions with multiple filamin Ig repeats. Such an interaction mode may allow filamins to cluster multiple CFTR molecules and to promote colocalization of CFTR and other filamin-binding proteins in the apical plasma membrane of epithelial cells.  相似文献   

12.
The C terminus of CFTR contains a PDZ interacting domain that is required for the polarized expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the apical plasma membrane of polarized epithelial cells. To elucidate the mechanism whereby the PDZ interacting domain mediates the polarized expression of CFTR, Madin-Darby canine kidney cells were stably transfected with wild type (wt-CFTR) or C-terminally truncated human CFTR (CFTR-DeltaTRL). We tested the hypothesis that the PDZ interacting domain regulates sorting of CFTR from the Golgi to the apical plasma membrane. Pulse-chase studies in combination with domain-selective cell surface biotinylation revealed that newly synthesized wt-CFTR and CFTR-DeltaTRL were targeted equally to the apical and basolateral membranes in a nonpolarized fashion. Thus, the PDZ interacting domain is not an apical sorting motif. Deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane from approximately 24 to approximately 13 h but had no effect on the half-life of CFTR in the basolateral membrane. Thus, the PDZ interacting domain is an apical membrane retention motif. Next, we examined the hypothesis that the PDZ interacting domain affects the apical membrane half-life of CFTR by altering its endocytosis and/or endocytic recycling. Endocytosis of wt-CFTR and CFTR-DeltaTRL did not differ. However, endocytic recycling of CFTR-DeltaTRL was decreased when compared with wt-CFTR. Thus, deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane by decreasing CFTR endocytic recycling. Our results identify a new role for PDZ proteins in regulating the endocytic recycling of CFTR in polarized epithelial cells.  相似文献   

13.
Piserchio A  Fellows A  Madden DR  Mierke DF 《Biochemistry》2005,44(49):16158-16166
The association of the cystic fibrosis transmembrane regulator (CFTR) with two PDZ-containing molecular scaffolds (CAL and EBP50) plays an important role in CFTR trafficking and membrane maintenance. The CFTR-molecular scaffold interaction is mediated by the association of the C-terminus of the transmembrane regulator with the PDZ domains. Here, we characterize the structure and dynamics of the PDZ of CAL and the complex formed with CFTR employing high-resolution NMR. On the basis of NMR relaxation data, the alpha2 helix as well as the beta2-beta3 loop of CAL PDZ domain undergoes rapid dynamics. Molecular dynamics simulations suggest a concerted motion between the alpha2 helix and the beta1-beta2 and beta2-beta3 loops, elements which define the binding pocket, suggesting that dynamics may play a role in PDZ-ligand specificity. The C-terminus of CFTR binds to CAL with the final four residues (-D(-)(3)-T-R-L(0)) within the canonical PDZ-binding motif, between the beta2 strand and the alpha2 helix. The R(-)(1) and D(-)(3) side chains make a number of contacts with the PDZ domain; many of these interactions differ from those in the CFTR-EBP50 complex, suggesting sites that can be targeted in the development of PDZ-selective inhibitors that may help modulate CFTR function.  相似文献   

14.
Water and solute transport across the plasma membrane of cells is a crucial biological function that is mediated mainly by aquaporins and aquaglyceroporins. The regulation of these membrane proteins is still incompletely understood. Using the male reproductive tract as a model system in which water and glycerol transport are critical for the establishment of fertility, we now report a novel pathway for the regulation of aquaporin 9 (AQP9) permeability. AQP9 is the major aquaglyceroporin of the epididymis, liver, and peripheral leukocytes, and its COOH-terminal portion contains a putative PDZ binding motif (SVIM). Here we show that NHERF1, cystic fibrosis transmembrane conductance regulator (CFTR), and AQP9 co-localize in the apical membrane of principal cells of the epididymis and the vas deferens, and that both NHERF1 and CFTR co-immunoprecipitate with AQP9. Overlay assays revealed that AQP9 binds to both the PDZ1 and PDZ2 domains of NHERF1, with an apparently higher affinity for PDZ1 versus PDZ2. Pull-down assays showed that the AQP9 COOH-terminal SVIM motif is essential for interaction with NHERF1. Functional assays on isolated tubules perfused in vitro showed a high permeability of the apical membrane to glycerol, which is inhibited by the AQP9 inhibitor, phloretin, and is markedly activated by cAMP. The CFTR inhibitors DPC, GlyH-101 and CFTRinh-172 all significantly reduced the cAMP-activated glycerol-induced cell swelling. We propose that CFTR is an important regulator of AQP9 and that the interaction between AQP9, NHERF1, and CFTR may facilitate the activation of AQP9 by cAMP.  相似文献   

15.
Epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are co-localized in the apical membrane of many epithelia. These channels are essential for electrolyte and water secretion and/or reabsorption. In cystic fibrosis airway epithelia, a hyperactivated epithelial Na(+) conductance operates in parallel with defective Cl(-) secretion. Several groups have shown that CFTR down-regulates ENaC activity, but the mechanisms and the regulation of CFTR by ENaC are unknown. To test the hypothesis that ENaC and CFTR regulate each other, and to identify the region(s) of ENaC involved in the interaction between CFTR and ENaC, rENaC and its mutants were co-expressed with CFTR in Xenopus oocytes. Whole cell macroscopic sodium currents revealed that wild type (wt) alphabetagamma-rENaC-induced Na(+) current was inhibited by co-expression of CFTR, and further inhibited when CFTR was activated with a cAMP-raising mixture (CKT). Conversely, alphabetagamma-rENaC stimulated CFTR-mediated Cl(-) currents up to approximately 6-fold. Deletion mutations in the intracellular tails of the three rENaC subunits suggested that the carboxyl terminus of the beta subunit was required both for the down-regulation of ENaC by activated CFTR and the up-regulation of CFTR by ENaC. However, both the carboxyl terminus of the beta subunit and the amino terminus of the gamma subunit were essential for the down-regulation of rENaC by unstimulated CFTR. Interestingly, down-regulation of rENaC by activated CFTR was Cl(-)-dependent, while stimulation of CFTR by rENaC was not dependent on either cytoplasmic Na(+) or a depolarized membrane potential. In summary, there appear to be at least two different sites in ENaC involved in the intermolecular interaction between CFTR and ENaC.  相似文献   

16.
The Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The NHERF PDZ1 domain interacts specifically with the motifs DSLL, DSFL, and DTRL present at the carboxyl termini of the beta(2) adrenergic receptor (beta(2)AR), the platelet-derived growth factor receptor (PDGFR), and the cystic fibrosis transmembrane conductance regulator (CFTR), respectively, and plays a central role in the physiological regulation of these proteins. The crystal structure of the human NHERF PDZ1 has been determined at 1.5 A resolution using multiwavelength anomalous diffraction phasing. The overall structure is similar to known PDZ structures, with notable differences in the NHERF PDZ1 carboxylate-binding loop that contains the GYGF motif, and the variable loop between the beta2 and beta3 strands. In the crystalline state, the carboxyl-terminal sequence DEQL of PDZ1 occupies the peptide-binding pocket of a neighboring PDZ1 molecule related by 2-fold crystallographic symmetry. This structure reveals the molecular mechanism of carboxyl-terminal leucine recognition by class I PDZ domains, and provides insights into the specificity of NHERF interaction with the carboxyl termini of several membrane receptors and ion channels, including the beta(2)AR, PDGFR, and CFTR.  相似文献   

17.
Enhanced osmotic water permeability has been observed in Xenopus oocytes expressing cystic fibrosis transmembrane conductance regulator (CFTR) protein. Subsequent studies have shown that CFTR activates an endogenous water permeability in oocytes, but that CFTR itself is not the water channel. Here, we show CFTR-dependent activation of endogenous water permeability in normal but not in cystic fibrosis human airway epithelial cells. Cell volume was measured by novel confocal x-z laser scanning microscopy. Glycerol uptake and antisense studies suggest CFTR-dependent regulation of aquaporin 3 (AQP3) water channels in airway epithelial cells. Regulatory interaction was confirmed by coexpression of CFTR and AQP3 cloned from human airways in Xenopus oocytes and of CFTR and rat AQP3 in Chinese hamster ovary cells. These findings indicate that CFTR is a regulator of AQP3 in airway epithelial cells.  相似文献   

18.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.  相似文献   

19.
CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein-protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We specifically targeted the PDZ domain-based LPA2 (type 2 lysophosphatidic acid receptor)-NHERF2 (Na+/H+ exchanger regulatory factor-2) interaction within the CFTR-NHERF2-LPA2-containing macromolecular complexes in airway epithelia and tested its regulatory role on CFTR channel function. We identified a cell-permeable small-molecule compound that preferentially inhibits the LPA2-NHERF2 interaction. We show that this compound can disrupt the LPA2-NHERF2 interaction in cells and thus compromises the integrity of macromolecular complexes. Functionally, it elevates cAMP levels in proximity to CFTR and upregulates its channel activity. The results of the present study demonstrate that CFTR Cl- channel function can be finely tuned by modulating PDZ domain-based protein-protein interactions within the CFTR-containing macromolecular complexes. The present study might help to identify novel therapeutic targets to treat diseases associated with dysfunctional CFTR Cl- channels.  相似文献   

20.
PDZ domains are ubiquitous peptide-binding modules that mediate protein-protein interactions in a wide variety of intracellular trafficking and localization processes. These include the pathways that regulate the membrane trafficking and endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel mutated in patients with cystic fibrosis. Correspondingly, a number of PDZ proteins have now been identified that directly or indirectly interact with the C terminus of CFTR. One of these is CAL, whose overexpression in heterologous cells directs the lysosomal degradation of WT-CFTR in a dose-dependent fashion and reduces the amount of CFTR found at the cell surface. Here, we show that RNA interference targeting endogenous CAL specifically increases cell-surface expression of the disease-associated DeltaF508-CFTR mutant and thus enhances transepithelial chloride currents in a polarized human patient bronchial epithelial cell line. We have reconstituted the CAL-CFTR interaction in vitro from purified components, demonstrating for the first time that the binding is direct and allowing us to characterize its components biochemically and biophysically. To test the hypothesis that inhibition of the binding site could also reverse CAL-mediated suppression of CFTR, a three-dimensional homology model of the CAL.CFTR complex was constructed and used to generate a CAL mutant whose binding pocket is correctly folded but has lost its ability to bind CFTR. Although produced at the same levels as wild-type protein, the mutant does not affect CFTR expression levels. Taken together, our data establish CAL as a candidate therapeutic target for correction of post-maturational trafficking defects in cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号