首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the gene encoding ether-à-go-go (EAG) potassium channel impair the function of several classes of potassium currents, synaptic transmission, and learning in Drosophila. Absence of EAG abolishes the modulation of a broad group of potassium currents. EAG has been proposed to be a regulatory subunit of different potassium channels. To further explore this regulatory role we searched for signaling molecules that associate with EAG protein. We have purified a approximately 95-kDa protein from rat brain membranes that binds to EAG. When co-expressed in mammalian cells this protein coimmunoprecipites with EAG and alters the gating of EAG channels. Expression of this protein is regulated during neuronal differentiation. The protein is identical to the recently reported rat protein epsin, which is an EH domain-binding protein similar to the Xenopus mitotic phosphoprotein MP90. These results show that proteins of the epsin family are modulators of channel activity that may link signaling pathways, or the cell cycle, to EAG and thus to various potassium channel functions.  相似文献   

2.
It has been shown previously that heterologous expression of inwardly rectifying potassium channels (K+-channels) from plants and mammals in K+-transport defective yeast mutants can restore the ability of growth in media with low [K+]. In this study, the functional expression of an outward rectifying mammalian K+-channel in yeast is presented for the first time. The outward-rectifying mammalian neuronal K+-channel rat ether à go-go channel 1 (rEAG1, Kv 10.1) was expressed in yeast (Saccharomyces cerevisiae) strains lacking the endogenous K+-uptake systems and/or alkali-metal-cation efflux systems. It was found that a truncated channel version, lacking almost the complete intracellular N-terminus (rEAG1 Delta 190) but not the full-length rEAG1, partially complemented the growth defect of K+-uptake mutant cells (trk1,2 Delta tok1 Delta) in media containing low K+ concentrations. The expression of rEAG1 Delta 190 in a strain lacking the cation efflux systems (nha1 Delta ena1-4 Delta) increased the sensitivity to high monovalent cation concentrations. Both phenotypes were observed, when rEAG1 Delta 190 was expressed in a trk1,2 Delta and nha1, ena1-4 Delta mutant strain. In the presence of K+-channel blockers (Cs+, Ba2+ and quinidine), the growth advantage of rEAG1 Delta 190 expressing trk1,2 tok1 Delta cells disappeared, indicating its dependence on functional rEAG1 channels. The results demonstrate that S. cerevisiae is a suitable expression system even for voltage-gated outward-rectifying mammalian K+-channels.  相似文献   

3.
Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecipitation, Western blot, and mutagenesis approaches. We found that the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556 (10 μM), but not the platelet growth factor receptor (PDGFR) kinase inhibitor AG1295 (10 μM) or the Src-family inhibitor PP2 (10 μM), can inhibit hEAG1 current, and the inhibitory effect can be reversed by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hEAG1 channels was reduced by AG556, and the reduction was significantly countered by orthovanadate. The hEAG1 mutants Y90A, Y344A and Y485A, but not Y376A and Y479A, exhibited reduced response to AG556. Interestingly, the inhibition effect of AG556 was lost in triple mutant hEAG1 channels at Y90, Y344, and Y485 with alanine. These results demonstrate for the first time that hEAG1 channel activity is regulated by EGFR kinase at the tyrosine residues Tyr90, Try344, and Try485. This effect is likely involved in regulating neuronal activity and/or tumor growth.  相似文献   

4.
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K(+), Na(+), Ca(2+), and Cl(-) was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca(2+)-activated K(+) current (BK(Ca)), delayed rectifier K(+) current (IK(DR)), inwardly rectifying K(+) current (I(Kir)), Ca(2+)-activated K(+) current (IK(Ca)), and chloride current (I(Cl))] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BK(Ca), IK(DR), I(Kir), and IK(Ca)) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IK(DR) with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.  相似文献   

5.
6.
Jo SH  Hong HK  Chong SH  Choe H 《Life sciences》2008,82(5-6):331-340
Protriptyline, a tricyclic antidepressant for psychiatric disorders, can induce prolonged QT, torsades de pointes, and sudden death. We studied the effects of protriptyline on human ether-à-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells. Protriptyline induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and HERG tail currents. The IC(50) for protriptyline block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 142.0 microM at -40 mV to 91.7 microM at 0 mV to 52.9 microM at +40 mV. The voltage dependence of the block could be fit with a monoexponential function, and the fractional electrical distance was estimated to be delta=0.93. The IC(50) for the protriptyline-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 1.18 microM at +20 mV. Protriptyline affected channels in the activated and inactivated states, but not in the closed states. HERG blockade by protriptyline was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation. Our findings suggest that inhibition of HERG currents may contribute to the arrhythmogenic side effects of protriptyline.  相似文献   

7.
Voltage-gated potassium (Kv) channels containing alpha-subunits of the Kv2 subfamily mediate delayed rectifier currents in excitable cells. Channels formed by Kv2.1 alpha-subunits inactivate from open- and closed states with both forms of inactivation serving different physiological functions. Here we show that open- and closed-state inactivation of Kv2.1 can be distinguished by the sensitivity to intracellular tetraethylammonium and extracellular potassium and lead to the same inactivated conformation. The functional properties of Kv2.1 are regulated by its association with modulatory alpha-subunits (Kv5, Kv6, Kv8, and Kv9). For instance, Kv9.3 changes the state preference of Kv2.1 inactivation by accelerating closed-state inactivation and inhibiting open-state inactivation. An N-terminal regulatory domain (NRD) has been suggested to determine the function of the modulatory alpha-subunit Kv8.1. However, when we tested the NRD of Kv9.3, we found that the functional properties of chimeric Kv2.1 channels containing the NRD of Kv9.3 (Kv2.1(NRD)) did not resemble those of Kv2.1/Kv9.3 heteromers, thus questioning the role of the NRD in Kv9 subunits. A further region of interest is a PXP motif in the sixth transmembrane segment. This motif is conserved among all alpha-subunits of the Kv1, Kv2, Kv3, and Kv4 subfamilies, whereas the second proline is not conserved in any modulatory alpha-subunit. Exchanging this proline in Kv2.1 for the corresponding residue of Kv9.3 resulted in channels (Kv2.1-P410T) that show all hallmarks of the regulation of Kv2.1 by Kv9.3. The effect prevailed in heteromeric channels following co-expression of Kv2.1-P410T with Kv2.1. These data suggest that the alteration of the PXP motif is an important determinant of the regulatory function of modulatory alpha-subunits.  相似文献   

8.
Human ether-à-go-go-related gene (hERG) K(+) channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2-26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1-26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26-135 form a Per-Arnt-Sim domain, but a structure for NT1-26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1-26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1-26 domain. We propose a model in which NT1-26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore.  相似文献   

9.
In ether-à-go-go (eag) K+ channels, extracellular divalent cations bind to the resting voltage sensor and thereby slow activation. Two eag-specific acidic residues in S2 and S3b coordinate the bound ion. Residues located at analogous positions are ∼4 Å apart in the x-ray structure of a Kv1.2/Kv2.1 chimera crystallized in the absence of a membrane potential. It is unknown whether these residues remain in proximity in Kv1 channels at negative voltages when the voltage sensor domain is in its resting conformation. To address this issue, we mutated Shaker residues I287 and F324, which correspond to the binding site residues in eag, to aspartate and recorded ionic and gating currents in the presence and absence of extracellular Mg2+. In I287D+F324D, Mg2+ significantly increased the delay before ionic current activation and slowed channel opening with no readily detectable effect on closing. Because the delay before Shaker opening reflects the initial phase of voltage-dependent activation, the results indicate that Mg2+ binds to the voltage sensor in the resting conformation. Supporting this conclusion, Mg2+ shifted the voltage dependence and slowed the kinetics of gating charge movement. Both the I287D and F324D mutations were required to modulate channel function. In contrast, E283, a highly conserved residue in S2, was not required for Mg2+ binding. Ion binding affected activation by shielding the negatively charged side chains of I287D and F324D. These results show that the engineered divalent cation binding site in Shaker strongly resembles the naturally occurring site in eag. Our data provide a novel, short-range structural constraint for the resting conformation of the Shaker voltage sensor and are valuable for evaluating existing models for the resting state and voltage-dependent conformational changes that occur during activation. Comparing our data to the chimera x-ray structure, we conclude that residues in S2 and S3b remain in proximity throughout voltage-dependent activation.  相似文献   

10.
We have characterized the effects of prepulse hyperpolarization and extracellular Mg(2+) on the ionic and gating currents of the Drosophila ether-à-go-go K(+) channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg(2+) dramatically slowed activation of eag ionic currents evoked with or without prepulse hyperpolarization and regulated the kinetics of channel opening from a nearby closed state(s). These results suggest that Mg(2+) modulates voltage-dependent gating and pore opening in eag channels. To investigate the mechanism of this modulation, eag gating currents were recorded using the cut-open oocyte voltage clamp. Prepulse hyperpolarization and extracellular Mg(2+) slowed the time course of ON gating currents. These kinetic changes resembled the results at the ionic current level, but were much smaller in magnitude, suggesting that prepulse hyperpolarization and Mg(2+) modulate gating transitions that occur slowly and/or move relatively little gating charge. To determine whether quantitatively different effects on ionic and gating currents could be obtained from a sequential activation pathway, computer simulations were performed. Simulations using a sequential model for activation reproduced the key features of eag ionic and gating currents and their modulation by prepulse hyperpolarization and extracellular Mg(2+). We have also identified mutations in the S3-S4 loop that modify or eliminate the regulation of eag gating by prepulse hyperpolarization and Mg(2+), indicating an important role for this region in the voltage-dependent activation of eag.  相似文献   

11.
Extracellular Mg(2+) directly modulates voltage-dependent activation in ether-à-go-go (eag) potassium channels, slowing the kinetics of ionic and gating currents (Tang, C.-Y., F. Bezanilla, and D.M. Papazian. 2000. J. Gen. Physiol. 115:319-337). To exert its effect, Mg(2+) presumably binds to a site in or near the eag voltage sensor. We have tested the hypothesis that acidic residues unique to eag family members, located in transmembrane segments S2 and S3, contribute to the Mg(2+)-binding site. Two eag-specific acidic residues and three acidic residues found in the S2 and S3 segments of all voltage-dependent K(+) channels were individually mutated in Drosophila eag, mutant channels were expressed in Xenopus oocytes, and the effect of Mg(2+) on ionic current kinetics was measured using a two electrode voltage clamp. Neutralization of eag-specific residues D278 in S2 and D327 in S3 eliminated Mg(2+)-sensitivity and mimicked the slowing of activation kinetics caused by Mg(2+) binding to the wild-type channel. These results suggest that Mg(2+) modulates activation kinetics in wild-type eag by screening the negatively charged side chains of D278 and D327. Therefore, these residues are likely to coordinate the bound ion. In contrast, neutralization of the widely conserved residues D284 in S2 and D319 in S3 preserved the fast kinetics seen in wild-type eag in the absence of Mg(2+), indicating that D284 and D319 do not mediate the slowing of activation caused by Mg(2+) binding. Mutations at D284 affected the eag gating pathway, shifting the voltage dependence of Mg(2+)-sensitive, rate limiting transitions in the hyperpolarized direction. Another widely conserved residue, D274 in S2, is not required for Mg(2+) sensitivity but is in the vicinity of the binding site. We conclude that Mg(2+) binds in a water-filled pocket between S2 and S3 and thereby modulates voltage-dependent gating. The identification of this site constrains the packing of transmembrane segments in the voltage sensor of K(+) channels, and suggests a molecular mechanism by which extracellular cations modulate eag activation kinetics.  相似文献   

12.
We have cloned a mammalian (rat) homologue of Drosophila ether á go-go (eag) cDNA, which encodes a distinct type of voltage activated potassium (K) channel. The derived Drosophila and rat eag polypeptides share > 670 amino acids, with a sequence identity of 61%, exhibiting a high degree of similarity at the N-terminus, the hydrophobic core including the pore forming P region and a potential cyclic nucleotide binding site. Rat eag mRNA is specifically expressed in the central nervous system. In the Xenopus oocyte expression system rat eag mRNA gives rise to voltage activated K channels which have distinct properties in comparison with Drosophila eag channels and other voltage activated K channels. Thus, the rat eag channel further extends the known diversity of K channels. Most notably, the kinetics of rat eag channel activation depend strongly on holding membrane potential. Hyperpolarization slows down the kinetics of activation; conversely depolarization accelerates the kinetics of activation. This novel K channel property may have important implications in neural signal transduction allowing neurons to tune their repolarizing properties in response to membrane hyperpolarization.  相似文献   

13.
Recently, we reported that mutation A1529D in the domain (D) IV P-loop of the rat skeletal muscle Na(+) channel mu(1) (DIV-A1529D) enhanced entry to an inactivated state from which the channels recovered with an abnormally slow time constant on the order of approximately 100 s. Transition to this "ultra-slow" inactivated state (USI) was substantially reduced by binding to the outer pore of a mutant mu-conotoxin GIIIA. This indicated that USI reflected a structural rearrangement of the outer channel vestibule and that binding to the pore of a peptide could stabilize the pore structure (Hilber, K., Sandtner, W., Kudlacek, O., Glaaser, I. W., Weisz, E., Kyle, J. W., French, R. J., Fozzard, H. A., Dudley, S. C., and Todt, H. (2001) J. Biol. Chem. 276, 27831-27839). Here, we tested the hypothesis that occlusion of the inner vestibule of the Na(+) channel by the fast inactivation gate inhibits ultra-slow inactivation. Stabilization of the fast inactivated state (FI) by coexpression of the rat brain beta(1) subunit in Xenopus oocytes significantly prolonged the time course of entry to the USI. A reduction in USI was also observed when the FI was stabilized in the absence of the beta(1) subunit, suggesting a causal relation between the occurrence of the FI and inhibition of USI. This finding was further confirmed in experiments where the FI was destabilized by introducing the mutations I1303Q/F1304Q/M1305Q. In DIV-A1529D + I1303Q/F1304Q/M1305Q channels, occurrence of USI was enhanced at strongly depolarized potentials and could not be prevented by coexpression of the beta(1) subunit. These results strongly suggest that FI inhibits USI in DIV-A1529D channels. Binding to the inner pore of the fast inactivation gate may stabilize the channel structure and thereby prevent USI. Some of the data have been published previously in abstract form (Hilber, K., Sandtner, W., Kudlacek, O., Singer, E., and Todt, H. (2002) Soc. Neurosci. Abstr. 27, program number 46.12).  相似文献   

14.
Molecular simulation techniques were appplied to predict the interaction of the voltage-dependent Shaker potassium channel with the channel-blocking toxin kappa-conotoxin-PVIIA (PVIIA). A structural thee-dimensional model of the extracellular vestibule of the potassium channel was constructed based on structural homologies with the bacterial potassium channel Kcsa, whose structure has been solved by X-ray crystallography. The docking of the PVIIA molecule was obtained by a geometric recognition algorithm, yielding 100 possible conformations. A series of residue-residue distance restraints, predicted from mutation-cycle experiments, were used to select a small set of a plausible channel-toxin complex models among the resulting possible conformations. The four final conformations, with similar characteristics, can explain most of the single-point mutation experiments done with this system. The models of the Shaker-PVIIA interaction predict two clusters of amino acids, critical for the binding of the toxin to the channel. The first cluster is the amino acids R2, I3, Q6 and K7 that form the plug of the toxin that interacts with the entrance to the selectivity filter of the channel. The second cluster of residues, R22, F23, N24 and K25, interacts with a channel region near to the external entrance of the pore vestibule. The consistency of the obtained models and the experimental data indicate that the Shaker-PVIIA complex model is reasonable and can be used in further biological studies such as the rational design of blocking agents of potassium channels and the mutagenesis of both toxins and potassium channels.  相似文献   

15.
Glial cells in the nervous system are believed to reduce changes of extracellular potassium concentration ([K+]o), caused by neural activity, by carrying out spatial buffering of potassium. In the case of retinal glial cells (Müller cells), light-evoked increases of [K+]o within the retina are reduced by K ions flowing through the Müller cell to the vitreous fluid of the eye. We have calculated the optimal way to distribute the potassium conductance of the Müller cell to maximize spatial buffering to the vitreous fluid. The best distribution is with half the potassium conductance in the outer part of the cell, where K+ enters, and half the conductance in the vitreal endfoot, where K+ leaves the cell. This calculated distribution is very different from the actual distribution measured by Newman (1984, Nature [Lond.], 309: 155-157), where only 6% of the Müller cell conductance is in the outer cell and 94% is in the endfoot. The experimentally observed distribution gives less than a quarter of the spatial buffering that would be produced by the optimal distribution. The possible advantages of this arrangement are discussed.  相似文献   

16.
The immunohistochemical localization of 1A, 1B, 1C, 1D, and 1E voltage-gated calcium channel subunits was investigated in the chinchilla organ of Corti and spiral ganglia with the use of specific antipeptide antibodies. The inner and outer hair cells were immunoreactive for 1A and 1D subunit antibodies. 1C immunoreactivity localized to the nerve terminals innervating inner hair cells and the basal pole of the outer hair cell. There was only non-specific staining to 1B and 1E. Supporting cells were non-immunoreactive. Spiral ganglia neurons were 1B, 1C, and 1D immunoreactive. A few spiral ganglia neurons were 1E immunoreactive. The importance of 1D, the pore-forming subunit of the L-type channel, in outer and inner hair cell function has been clearly demonstrated in electrophysiological, molecular biological, and knockout models. The presence of 1A, the pore-forming subunit of the P/Q type channels, has not previously been demonstrated in inner and outer hair cells, and its function in the cochlear hair cell is unknown.The National Institutes of Health grants AG09693-10, DC005224, 00140-02, and DC05187-01 supported this work.  相似文献   

17.
Interactions of the 8-kDa domain of the rat pol β and the intact enzyme with the ssDNA have been studied, using the quantitative fluorescence titration technique. The 8-kDa domain induces large topological changes in the bound DNA structure and engages much larger fragments of the DNA than when embedded in the intact enzyme. The DNA affinity of the domain is predominantly driven by entropy changes, dominated by the water release from the protein. The thermodynamic characteristics dramatically change when the domain is embedded in the intact polymerase, indicating the presence of significant communication between the 8-kDa domain and the catalytic 31-kDa domain. The diminished water release from the 31-kDa domain strongly contributes to its dramatically lower DNA affinity, as compared to the 8-kDa domain. Unlike the 8-kDa domain, the DNA binding of the intact pol β is driven by entropy changes, originating from the structural changes of the formed complexes.  相似文献   

18.
Hyperglycemia and hypoglycemia both can cause prolongation of the Q-T interval and ventricular arrhythmias. Here we studied modulation of human ether-à-go-go-related gene (HERG) K(+) channel, the major molecular component of delayed rectifier K(+) current responsible for cardiac repolarization, by glucose in HEK293 cells using whole-cell patch clamp techniques. We found that both hyperglycemia (extracellular glucose concentration [Glu](o) = 10 or 20 mm) and hypoglycemia ([Glu](o) = 2.5, 1, or 0 mm) impaired HERG function by reducing HERG current (I(HERG)) density, as compared with normoglycemia ([Glu](o) = 5 mm). Complete inhibition of glucose metabolism (glycolysis and oxidative phosphorylation) by 2-deoxy-d-glucose mimicked the effects of hypoglycemia, but inhibition of glycolysis or oxidative phosphorylation alone did not cause I(HERG) depression. Depletion of intracellular ATP mimicked the effects of hypoglycemia, and replacement of ATP by GTP or non-hydrolysable ATP failed to prevent the effects. Inhibition of oxidative phosphorylation by NaCN or application of antioxidants vitamin E or superoxide dismutase mimetic (Mn(III) tetrakis(4-benzoic acid) porphyrin chloride) abrogated and incubation with xanthine/xanthine oxidase mimicked the effects of hyperglycemia. Hyperglycemia or xanthine/xanthine oxidase markedly increased intracellular levels of reactive oxygen species, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H(2)DCFDA) fluorescence dye, and this increase was prevented by NaCN, vitamin E, or Mn(III) tetrakis(4-benzoic acid) porphyrin chloride. We conclude that ATP, derived from either glycolysis or oxidative phosphorylation, is critical for normal HERG function; depression of I(HERG) in hypoglycemia results from underproduction of ATP and in hyperglycemia from overproduction of reactive oxygen species. Impairment of HERG function might contribute to Q-T prolongation caused by hypoglycemia and hyperglycemia.  相似文献   

19.
The mechanism of tissue protection from ischemic damage by activation of the mitochondrial ATP-dependent K+ channel (mitoKATP) remains unexplored. In this work, we have measured, using various approaches, the ATP-dependent mitochondrial K+ transport in rats that differed in their resistance to hypoxia. The transport was found to be faster in the hypoxia-resistant rats as compared to that in the hypoxia-sensitive animals. Adaptation of animals to the intermittent normobaric hypoxia increased the rate of transport. At the same time, the intramitochondrial concentration of K+ in the hypoxia-sensitive rats was higher than that in the resistant and adapted animals. This indicates that adaptation to hypoxia stimulates not only the influx of potassium into mitochondria, but also K+/H+ exchange. When mitoKATP was blocked, the rate of the mitochondrial H2O2 production was found to be significantly higher in the hypoxia-resistant rats than that in the hypoxia-sensitive animals. The natural flavonoid-containing adaptogen Extralife, which has an evident antihypoxic effect, increased the rate of the mitochondrial ATP-dependent K+ transport in vitro and increased the in vivo tolerance of hypoxia-sensitive rats to acute hypoxia 5-fold. The involvement of the mitochondrial K+ transport in the mechanism of cell adaptation to hypoxia is discussed.  相似文献   

20.
Voltage-dependent calcium channels constitute the main entry pathway for calcium into excitable cells. They are heteromultimers formed by an α(1) pore-forming subunit (Ca(V)α(1)) and accessory subunits. To achieve a precise coordination of calcium signals, the expression and activity of these channels is tightly controlled. The accessory β-subunit (Ca(V)β), a membrane associated guanylate kinase containing one guanylate kinase (β-GK) and one Src homology 3 (β-SH3) domain, has antagonistic effects on calcium currents by regulating different aspects of channel function. Although β-GK binds to a conserved site within the α(1)-pore-forming subunit and facilitates channel opening, β-SH3 binds to dynamin and promotes endocytosis. Here, we investigated the molecular switch underlying the functional duality of this modular protein. We show that β-SH3 homodimerizes through a single disulfide bond. Substitution of the only cysteine residue abolishes dimerization and impairs internalization of L-type Ca(V)1.2 channels expressed in Xenopus oocytes while preserving dynamin binding. Covalent linkage of the β-SH3 dimerization-deficient mutant yields a concatamer that binds to dynamin and restores endocytosis. Moreover, using FRET analysis, we show in living cells that Ca(V)β form oligomers and that this interaction is reduced by Ca(V)α(1). Association of Ca(V)β with a polypeptide encoding the binding motif in Ca(V)α(1) inhibited endocytosis. Together, these findings reveal that β-SH3 dimerization is crucial for endocytosis and suggest that channel activation and internalization are two mutually exclusive functions of Ca(V)β. We propose that a change in the oligomeric state of Ca(V)β is the functional switch between channel activator and channel internalizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号