首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The major immunodominant surface antigen 1 (TgSAG1) of invasive tachyzoites is a vaccine candidate antigen for Toxoplasma gondii. In this study, we developed a recombinant pseudorabies virus (PRV) expressing TgSAG1 (rPRV/SAG1) based on the PRV vaccine strain Bartha K-61 by homologous recombination, in which partial PK and gG genes were deleted. The growth assay of rPRV/SAG1 showed that the recombinant virus can replicate in vitro as efficiently as PRV Bartha K-61, demonstrating that insertion of the TgSAG1 gene in the PK and gG locus of PRV does not affect the replication of PRV. All mice vaccinated with rPRV/SAG1 developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong increase of the splenocyte proliferative response, and significant levels of IFN-gamma and IL-2 production. And the immunization of mice with rPRV/SAG1 elicited strong cytotoxic T lymphocyte (CTL) responses in vitro. These results demonstrate that rPRV/SAG1 could induce significant humoral and cellular Th1 immune responses. Moreover, rPVR/SAG1 immunization induced partial protection (60%) against a lethal challenge with the highly virulent T. gondii RH strain, and neutralizing antibodies against PRV in a BALB/c mouse model. These results suggest that expression of protective antigens of T. gondii in PRV Bartha K-61 is a novel approach towards the development of a vaccine against both animal toxoplasmosis and pseudorabies.  相似文献   

2.
3.
The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8+ T cells and was exploited in the development of a DNA vaccine against the intracellular protozoan Toxoplasma gondii by constructing a chimeric DNA encoding a fusion protein between murine ubiquitin and the toxoplasma antigen SAG1. The SAG1 peptide was promptly degraded in antigen-presenting cells (APCs) transfected with the chimeric DNA. Degradation, however, was hampered by incubating the APCs with the proteasome inhibitor epoxomicin. Mice vaccinated with the DNA acquired potent protective immunity mediated by MHC class I-restricted CD8+ T cells against infection by the highly virulent Toxoplasma. The accelerated degradation and induction of immunity were dependent on the UPS since mice lacking an immuno-subunit of 20S proteasome, LMP7, lost these functions, although they were independent of the proteasome regulator PA28alpha/beta complex.  相似文献   

4.
The prevalence of Toxoplasma gondii in 118 unwanted dogs from S?o Paulo City, S?o Paulo State, Brazil, was determined. Antibodies to T. gondii were assayed by the modified agglutination test and found in 42 (35.8%) dogs, with titers of 1:20 in 10, 1:40 in 6, 1:80 in 5, 1:160 in 5, 1:320 in 6, 1:640 in 7, and 1:1,280 or higher in 3. Hearts and brains of 36 seropositive dogs were bioassayed in mice, or cats, or both. Tissues from 20 seropositive dogs were fed to 20 T. gondii-free cats. Feces of cats were examined for oocysts. Toxoplasma gondii was isolated from 15 dogs by a bioassay in mice, from the brain alone of 1, from the heart alone of 4, and from both brains and hearts of 10. All infected mice from 5 of 15 isolates died of toxoplasmosis during primary infection. Four additional isolates were obtained by bioassay in cats. Genotyping of these 19 T. gondii isolates using polymorphisms at 10 nuclear markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and a new SAG2 (an apicoplast marker Apico) revealed 12 genotypes. One isolate had Type III alleles at all 11 loci, and the remaining 18 isolates contained a combination of different alleles and were divided into 11 genotypes. The absence of Type II in Brazil was confirmed. The result supports previous findings that T. gondii population genetics is highly diverse in Brazil.  相似文献   

5.
Cats are important in the natural epidemiology of Toxoplasma gondii, because they are the only hosts that can excrete environmentally resistant oocysts. Cats are infected with T. gondii via predation on infected birds and rodents. During 2005, 238 rats (Rattus norvegicus) were trapped in Grenada, West Indies, and their sera along with tissue samples from their hearts and brains were examined for T. gondii infection. Antibodies to T. gondii were assayed by the modified agglutination test (MAT, titer 1:40 or higher); only 2 (0.8%) of 238 rats were found to be infected. Brains and hearts of all rats were bioassayed in mice. Toxoplasma gondii was isolated from the brain and the heart of only 1 rat, which had a MAT titer of 1:320. All of 5 mice inoculated with the heart tissue, and the 5 mice inoculated with the brain tissue of the infected rat remained asymptomatic, even though tissue cysts were found in their brains. Genetically, the isolates of T. gondii from the heart and the brain were identical and had genotype III by using the SAG1, SAG2, SAG3, BTUB, and GRA6 gene markers. These data indicate that rats are not important in the natural history of T. gondii in Grenada.  相似文献   

6.
Toxoplasma gondii infection in marine mammals is intriguing and indicative of contamination of the ocean environment and coastal waters with oocysts. In previous serological surveys, >90% of bottlenose dolphins (Tursiops truncatus) from the coasts of Florida, South Carolina, and California had antibodies to T. gondii by the modified agglutination test (MAT). In the present study, attempts were made to isolate T. gondii from dead T. truncatus. During 2005, 2006, and 2007, serum or blood clot, and tissues (brain, heart, skeletal muscle) of 52 T. truncatus stranded on the coasts of South Carolina were tested for T. gondii. Antibodies to T. gondii (MAT 1:25 or higher) were found in 26 (53%) of 49 dolphins; serum was not available from 3 animals. Tissues (heart, muscle, and sometimes brain) of 32 dolphins (26 seropositive, 3 seronegative, and 3 without accompanying sera) were bioassayed for T. gondii in mice, or cats, or both. Tissues of the recipient mice were examined for T. gondii stages. Feces of recipient cats were examined for shedding of T. gondii oocysts, but none excreted oocysts. Toxoplasma gondii was isolated from hearts of the 3 dolphins (2 with MAT titers of 1:200, and 1 without accompanied serum) by bioassay in mice. Genotyping of these 3 T. gondii isolates (designated TgDoUs1-3) with the use of 10 PCR-RFLP markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) revealed 2 genotypes. Two of the 3 isolates have Type II alleles at all loci and belong to the clonal Type II lineage. One isolate has a unique genotype. This is the first report of isolation of viable T. gondii from T. truncatus.  相似文献   

7.
We adapted a previously described Agrobacterium-mediated transient expression system to test the expression level of three constructs carrying the surface antigen 1 (SAG1) of Toxoplasma gondii. Two constructs were based in a Potato virus X (PVX) amplicon. In one of them, the PVX movement protein genes were replaced by the sag1 gene. In the other, the sag1 gene was placed under the control of an additional coat protein subgenomic promoter. In the third construct, the sag1 gene was fused to an apoplastic peptide signal under the CaMV 35S promoter. Western blot analysis of leaf extracts infiltrated with each construct revealed a protein of 35 kDa. SAG1 accumulation in leaves ranged from 0.1 to 0.06% of total soluble protein (equivalent to 10 microg and 6 microg of SAG1 per gram of fresh leaf tissue, respectively). Three of five human seropositive samples reacted with tobacco-expressed SAG1 in Western blot analysis. The C3H mice were immunized with SAG-expressing leaf extracts and perorally challenged with a nonlethal dose of the T. gondii Me49 strain. Mice vaccinated with SAG1 showed significantly lower brain cyst burdens compared to those from the control group. Immunization with SAG1-expressing leaves elicited a specific humoral response with predominant participation of type IgG2a. In conclusion, a functional SAG1 version could be transiently expressed in tobacco leaves.  相似文献   

8.
We investigated the role of recombinant Toxoplasma gondii heat shock protein (rT.g.HSP) 70-full length, rT.g.HSP70-NH2-terminal region, or rT.g.HSP70-carboxy-terminal region in prophylactic immunity in C57BL/6 mice perorally infected with Fukaya cysts of T. gondii. At 3, 4, 5, and 6 weeks after infection, the number of T. gondii in the brain tissue of each mouse was measured by quantitative competitive-polymerase chain reaction (QC-PCR) targeting the surface antigen (SAG) 1 gene. Immunization with rT.g.HSP70-full length or r.T.g.HSP70-carboxy-terminal region increased the number of T. gondii in the brain tissue after T. gondii infection, whereas immunization with rT.g.HSP70-NH2-terminal region did not. These results suggest that T.g.HSP70-carboxy-terminal region as well as T.g.HSP70-full length may induce deleterious effects on the protective immunity of mice infected with a cyst-forming T. gondii strain, Fukaya.  相似文献   

9.
The role of specific microbial Ags in the induction of experimental inflammatory bowel disease is poorly understood. Oral infection of susceptible C57BL/6 mice with Toxoplasma gondii results in a lethal ileitis within 7-9 days postinfection. An immunodominant Ag of T. gondii (surface Ag 1 (SAG1)) that induces a robust B and T cell-specific response has been identified and a SAG1-deficient parasite (Deltasag1) engineered. We investigated the ability of Deltasag1 parasite to induce a lethal intestinal inflammatory response in susceptible mice. C57BL/6 mice orally infected with Deltasag1 parasites failed to develop ileitis. In vitro, the mutant parasites replicate in both enterocytes and dendritic cells. In vivo, infection with the mutant parasites was associated with a decrease in the chemokine and cytokine production within several compartments of the gut-associated cell population. RAG-deficient (RAG1(-/-)) mice are resistant to the development of the ileitis after T. gondii infection. Adoptive transfer of Ag-specific CD4(+) effector T lymphocytes isolated from C57BL/6-infected mice into RAG(-/-) mice conferred susceptibility to the development of the intestinal disease. In contrast, CD4(+) effector T lymphocytes from mice infected with the mutant Deltasag1 strain failed to transfer the pathology. In addition, resistant mice (BALB/c) that fail to develop ileitis following oral infection with T. gondii were rendered susceptible following intranasal presensitization with the SAG1 protein. This process was associated with a shift toward a Th1 response. These findings demonstrate that a single Ag (SAG1) of T. gondii can elicit a lethal inflammatory process in this experimental model of pathogen-driven ileitis.  相似文献   

10.
Toxoplasma gondii infection is generally asymptomatic in immunocompetent persons but can be life-threatening in immunocompromised persons and for fetuses in the case of maternal-fetal transmission. The effect of interferon (IFN)-gamma, which plays a crucial role in the protective immunity against T. gondii infection, on maternal-fetal transmission of T. gondii was analyzed by quantitative competitive polymerase chain reaction targeting T. gondii-specific SAG1 gene. T. gondii loads were obvious in uterus and placenta of wild type (WT) C57BL/6 (B6, susceptible strain) but not BALB/c (resistant strain) pregnant mice. Higher levels of T. gondii were detected in uterus and placenta of IFN-gamma knock-out (GKO) B6 and BALB/c than in those of WT mice. Furthermore, T. gondii was detected in fetus of GKO B6 but not GKO BALB/c, WT B6, or WT BALB/c mice. Thus, not only IFN-gamma but also genetic susceptibility to T. gondii infection was important for the protective immunity of maternal-fetal transmission of T. gondii to fetus via placenta. T. gondii-infected WT mice displayed a low delivery rate with high IFN-gamma production, whereas infected GKO mice did not. Additionally, mean body weight of neonates from T. gondii-infected GKO BALB/c pregnant mice was significantly lower than that of unaborted neonates from WT BALB/c pregnant mice, suggesting the effects of T. gondii infection on intrauterine growth retardation of fetus in pregnant GKO mice.  相似文献   

11.
Pectoral muscles from a captive keel-billed toucan (Ramphastos sulfuratus) from Costa Rica were fed to a Toxoplasma gondii-free cat, and the cat shed oocysts. Laboratory mice fed these oocysts developed antibodies to T. gondii in their sera and T. gondii tissue cysts in their brains. The DNA extracted from the brains of infected mice was characterized using 10 polymerase chain reaction-restricted fragment length polymorphic markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). The isolate designated TgRsCrl was found to be non-clonal with Type I, II, and III alleles at different loci. This is the first isolation of T. gondii from this host.  相似文献   

12.
Toxoplasma gondii was isolated from a feral guinea fowl (Numida meleagris) and domestic rabbits (Oryctologus cuniculus) from Brazil for the first time. Serum and brains from 10 guinea fowl and 21 rabbits from Brazil were examined for T. gondii infection. Antibodies to T. gondii were found in 2 of 10 fowl and 2 of 21 rabbits by the modified agglutination test (titer 1∶25 or higher). Viable T. gondii (designated TgNmBr1) was isolated from 1 of the 2 seropositive fowl by bioassay in mice but not from the 8 seronegative fowl by bioassay in cat. Viable T. gondii was isolated from both seropositive rabbits (designated TgRabbitBr1, TgRabbitBr2) by bioassay in mice from 1 and by bioassay in cat from the other. The TgRabbitBr1 strain was highly virulent for out-bred mice; mice fed 1 infective oocyst died of acute toxoplasmosis. The remaining 2 isolates were relatively avirulent for mice; lethal dose for mice was 10,000 oocysts. All 3 isolates were grown in cell culture, and tachyzoite-derived DNA were genotyped using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). The TgNmBr1 was found to be clonal Type II, a rare finding in Brazil in any host. The rabbit isolates were atypical, similar to isolates from cats from Brazil (TgRabbitBr1 was identical to TgCatBr5, and TgRabbitBr2 was identical to TgCatBr1, a common genotype in Brazil denoted type BrII). This is the first genetic characterization of T. gondii isolates from the rabbits and guinea fowl in Brazil and the first host record for T. gondii in the guinea fowl.  相似文献   

13.
Toxoplasma gondii infection in marine mammals is of interest because of mortality and mode of transmission. It has been suggested that marine mammals become infected with T. gondii oocysts washed from land to the sea. We report the isolation and genetic characterization of viable T. gondii from a striped dolphin (Stenella coeruleoalba), the first time from this host. An adult female dolphin was found stranded on the Pacific Coast of Costa Rica, and the animal died the next day. The dolphin had a high (1:6400) antibody titer to T. gondii in the modified agglutination test. Severe nonsuppurative meningoencephalomyelitis was found in its brain and spinal cord, but T. gondii was not found in histological sections of the dolphin. Portions of its brain and the heart were bioassayed in mice for the isolation of T. gondii. Viable T. gondii was isolated from the brain, but not from the heart, of the dolphin. A cat fed mice infected with the dolphin isolate (designated TgSdCol) shed oocysts. Genomic DNA from tachyzoites of this isolate was used for genotyping at 10 genetic loci, including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and this TgSdCo1 isolate was found to be Type II.  相似文献   

14.
Little information is available on the presence of viable Toxoplasma gondii in tissues of lambs worldwide. The prevalence of T. gondii was determined in 383 lambs (<1 year old) from Maryland, Virginia and West Virginia, USA. Hearts of 383 lambs were obtained from a slaughter house on the day of killing. Blood removed from each heart was tested for antibodies to T. gondii by using the modified agglutination test (MAT). Sera were first screened using 1:25, 1:50, 1: 100 and 1:200 dilutions, and hearts were selected for bioassay for T. gondii. Antibodies (MAT, 1:25 or higher) to T. gondii were found in 104 (27.1%) of 383 lambs. Hearts of 68 seropositive lambs were used for isolation of viable T. gondii by bioassay in cats, mice or both. For bioassays in cats, the entire myocardium or 500g was chopped and fed to cats, one cat per heart and faeces of the recipient cats were examined for shedding of T. gondii oocysts. For bioassays in mice, 50g of the myocardium was digested in an acid pepsin solution and the digest inoculated into mice; the recipient mice were examined for T. gondii infection. In total, 53 isolates of T. gondii were obtained from 68 seropositive lambs. Genotyping of the 53 T. gondii isolates using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed 57 strains with 15 genotypes. Four lambs had infections with two T. gondii genotypes. Twenty-six (45.6%) strains belong to the clonal Type II lineage (these strains can be further divided into two groups based on alleles at locus Apico). Eight (15.7%) strains belong to the Type III lineage. The remaining 22 strains were divided into 11 atypical genotypes. These results indicate high parasite prevalence and high genetic diversity of T. gondii in lambs, which has important implications in public health. We believe this is the first in-depth genetic analysis of T. gondii isolates from sheep in the USA.  相似文献   

15.
There is a lack of information concerning the prevalence of Toxoplasma gondii infection in wild birds in Mexico. In the present study, serum samples and tissues from 653 birds from Durango State, Mexico, were evaluated for T. gondii infection. Antibodies to T. gondii (modified agglutination test, titer 1∶25 or higher) were found in 17 (2.6%) of the 653 birds, including 1 of 2 curve-billed thrashers (Toxostoma curvirostre), 2 (1 Anas platyrhynchos, 1 Anas diazi) of 4 ducks, 1 of 2 eagles (Aquila sp.), 5 (27.8%) of 18 great-tailed grackles (Quiscalus mexicanus), 7 (1.3%) of 521 rock pigeons (Columba livia), and 1 (14.3%) of 7 quail (Coturnix coturnix). The seroprevalence of T. gondii infection in birds captured in a park outside the city zoo (11.6%, 8/69) was significantly higher than that found in birds from other regions (1.5%, 9/584, OR = 8.38; 95% CI: 2.82-24.77; P = 0.0001). Brains and hearts of 23 birds (17 seropositive, 6 seronegative) were bioassayed in mice for the isolation of T. gondii . Viable T. gondii was isolated from 1 of 7 seropositive pigeons. The DNA obtained from the T. gondii isolate from the pigeon was genotyped using the PCR-RFLP typing using 11 markers (B1, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico) and revealed an atypical genotype. This is the first report of T. gondii infection in great-tailed grackles, the Mexican duck, and curved-billed thrashers and the first survey of wild birds in Mexico.  相似文献   

16.
The prevalence of Toxoplasma gondii in free-ranging chickens (Gallus domesticus) is a good indicator of the prevalence of the parasite's oocysts in soil because chicken feed from the ground. The prevalence of T. gondii in free-range chickens from Ghana, Indonesia, Italy, Poland, and Vietnam was determined using the modified agglutination test (MAT). Antibodies to T. gondii were found in 41 (64%) of 64 chickens from Ghana, 24 (24.4%) of 98 chickens from Indonesia, 10 (12.5%) of 80 chickens from Italy, 6 (30%) of 20 chickens from Poland, and 81 (24.2%) of 330 chickens from Vietnam. Hearts and brains of chickens were bioassayed for T. gondii. Viable T. gondii was isolated from 2 chickens from Ghana, 1 chicken from Indonesia, 3 chickens from Italy, 2 chickens from Poland, and 1 chicken from Vietnam. Toxoplasma gondii isolates from 9 chickens were genotyped using 10 PCR-RFLP markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. A total of 7 genotypes was identified; the 3 isolates from chickens from Italy were clonal type II, and the others were nonclonal. This is the first report of genetic characterization of T. gondii isolates from animals from these countries.  相似文献   

17.
Toxoplasma gondii-associated meningoencephalitis is a significant disease of California sea otters (Enhydra lutris nereis), responsible for 16% of total mortality in fresh, beachcast carcasses. Toxoplasma gondii isolates were obtained from 35 California otters necropsied between 1998 and 2002. Based on multi-locus PCR-restriction fragment length polymorphism and DNA sequencing at conserved genes (18S rDNA, ITS-1) and polymorphic genes (B1, SAG1, SAG3 and GRA6), two distinct genotypes were identified: type II and a novel genotype, here called type x, that possessed distinct alleles at three of the four polymorphic loci sequenced. The majority (60%) of sea otter T. gondii infections were of genotype x, with the remaining 40% being of genotype II. No type I or III genotypes were identified. Epidemiological methods were used to examine the relationship between isolated T. gondii genotype(s) and spatial and demographic risk factors, such as otter stranding location and sex, as well as specific outcomes related to pathogenicity, such as severity of brain inflammation on histopathology and T. gondii-associated mortality. Differences were identified with respect to T. gondii genotype and sea otter sex and stranding location along the California coast. Localised spatial clustering was detected for both type II (centred within Monterey Bay) and x (centred near Morro Bay)-infected otters. The Morro Bay cluster of type x-infected otters overlaps previously reported high-risk areas for sea otter infection and mortality due to T. gondii. Nine of the 12 otters that had T. gondii-associated meningoencephalitis as a primary cause of death were infected with type x parasites.  相似文献   

18.
The prevalence of Toxoplasma gondii was investigated on a poorly managed pig farm in Maryland. Serum and tissue samples from 48 of the 100 pigs on the farm were available for T. gondii evaluation. Serological testing was performed using both ELISA and the modified agglutination test (MAT). Antibodies to T. gondii were detected by ELISA in 12 of 48 animals, while antibodies were detected in 34 of 48 pigs by MAT with titers of 1:10 in 1, 1:20 in 4, 1:40 in 7, 1:80 in 3, 1:160 in 8, 1:320 in 3, 1:640 in 4, and 1:1,280 in 4. Hearts of 16 pigs with MAT titers of 1:10 or higher were bioassayed for T. gondii in cats; 11 cats shed T. gondii oocysts. Hearts of 22 pigs were autolyzed and bioassayed only in mice; T. gondii was isolated from 3 of these 22 pigs. Genetic typing of the 14 T. gondii isolates using the SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico loci revealed 4 genotypes; 10 isolates belonged to type II lineage (genotypes 1 and 2), 3 belonged to genotype 3, and 1 belonged to genotype 4. Genotype 1 and 2 have type II alleles at all genetic loci, except the former has type II allele and the latter has a type I allele at locus Apico. Both genotypes 1 and 2 are considered to belong to the clonal type II lineages. Genotype 3 and 4 are nonclonal isolates. Results document high prevalence of T. gondii in pigs on a farm in Maryland.  相似文献   

19.
Cats are essential in the life cycle of Toxoplasma gondii because they are the only hosts that can excrete the environmentally resistant oocysts. Samples of serum, feces, and tissues from cats from Mona, a remote island off the coast of Puerto Rico, were examined for T. gondii infection. Antibodies to T. gondii were assayed by the modified agglutination test and found in 16 of 19 (84.2%) of cats, with titers of 1:10 in 2, 1:80 in 1, 1:160 in 4, 1:320 in 3, and 1:1,280 or higher in 6. Tissues of 19 of the 20 cats were bioassayed in mice for T. gondii infection. Toxoplasma gondii was isolated from tissues of 12 cats: from the hearts of 9, skeletal muscle of 10, and brain of 1 cat. All infected mice from 10 of 12 isolates died of acute toxoplasmosis during primary infection. Genotyping of these 12 T. gondii isolates (designated (TgCatPr 1-12) by 10 multilocus PCR-RFLP markers, i.e., SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and an apicoplast marker Apico, and the 6 multilocus microsatellite markers TUB2, W35, TgM-A, B18, B17, and M33, revealed 7 genotypes; 5 isolates had Type I alleles at all loci except at 1 microsatellite locus, and the remainder were atypical. The latter isolates of T. gondii were different biologically and phenotypically from the feline isolates from the rest of the Americas. One isolate (TgCatPr 12) was a mixed infection with 2 genotypes.  相似文献   

20.
Laboratory diagnostics of toxoplasmosis depends primarily on serological methods detecting specific antibodies. Since these methods do not always enable specific and sensitive recognition of the infection and phase of toxoplasmosis, the search for new diagnostic tools continues. Recombinant antigens promise a new alternative in diagnostics of Toxoplasma gondii infections. In this work the usefulness of six recombinant T. gondii antigens: GRA1, GRA6, GRA7, p35, SAG1, and SAG2 in the detection of primary murine toxoplasmosis was evaluated. Sera obtained from infected mice differing in their natural susceptibility to T. gondii infection, BALB/c (relatively resistant) and C57BL/6 (relatively susceptible), were tested using ELISA. During acute infection high response to GRA7, GRA6, and p35 antigens was noticed, whereas a strong reactivity with surface antigens SAG1 and SAG2 was characteristic for chronic toxoplasmosis. Our results show that the recombinant antigens are useful in distinguishing between acute and chronic toxoplasmosis regardless of the genetically determined susceptibility of the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号