首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.  相似文献   

2.
We have characterized the structural and thermotropic properties of one of the most important lipids in the cell membrane of Staphylococcus aureus, lysyl-dipalmitoylphosphatidylglycerol (lysyl-DPPG). applying differential scanning calorimetry and small- and wide-angle x-ray scattering. Microcalorimetry revealed that under physiological conditions (phosphate buffer, 20 mM NaPi, 130 mM NaCl, pH 7.4), the synthetic lysyl-DPPG resembles the features of the parent dipalmitoylphosphatidylglycerol (DPPG) with respect to its melting behavior. However, in contrast to DPPG, lowering the pH did not significantly affect the main transition temperature (∼40°C) of lysyl-DPPG, which can be explained by its difference in protonization because of the lysine group. X-ray experiments yielded the first information on chain packing and morphology of lysyl-DPPG. We found that lysyl-DPPG forms an interdigitated lamellar phase below the chain-melting transition. This can be explained by the large headgroup area of lysyl-DPPG as a result of its charged lysine group, especially if the headgroup is arranged parallel to the bilayer plane. Additionally, lysyl-DPPG degradation products, such as lysine and free fatty acids, had significant influences on the melting behavior and led to a multicomponent melting transition. Our results indicate that the degradation of lysyl-DPPG takes place mainly during the hydration process but also depends on lipid storage time, pH, and thermal treatment. Detailed temperature-resolved experiments at pH 5.0 demonstrated the formation of a lamellar gel phase with tilted hydrocarbon chains and a ripple phase, coexisting with the interdigitated lysyl-DPPG bilayers.  相似文献   

3.
The relationship between the molecular architecture of a series of poly(ethylene oxide)-b-poly(propylene oxide) (PEO-PPO) diblock copolymers and the nature of their interactions with lipid bilayers has been studied using small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC). The number of molecular repeat units in the hydrophobic PPO block has been found to be a critical determinant of the nature of diblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers whose PPO chain length approximates that of the acyl chains of the lipid bilayer yield highly ordered, expanded lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Shorter diblock copolymers produce mixed lamellar and nonlamellar mesophases. The thermotropic phase behavior of the polymer-doped membrane systems is highly influenced by the presence and molecular architecture of the diblock copolymer, as evidenced by shifting of the main phase transition to higher temperatures, broadening of the main transition, and the appearance of other features. Studies of temperature-induced changes in the mesophase structure for compositions prepared with well-integrated PEO-PPO polymers indicate that they undergo reversible changes to a nonlamellar structure as the temperature is lowered. Increasing either the number of repeat units in the PEO block or the polymer concentration promotes a greater degree of structural ordering.  相似文献   

4.
Synchrotron x-ray diffraction, differential scanning calorimetry, and electron spin resonance spectroscopy have been employed to characterize a quasicrystalline phase formed in aqueous dispersions of binary mixtures of glucocerebroside and palmitoyloleoylphosphatidylethanolamine. Small- and wide-angle x-ray scattering intensity patterns were recorded during temperature scans between 20 degrees and 90 degrees C from mixtures of composition 2, 5, 10, 20, 30, and 40 mol glucocerebroside per 100 mol phospholipid. The quasicrystalline phase was characterized by a broad lamellar d-spacing of 6.06 nm at 40 degrees C and a broad wide-angle x-ray scattering band centered at approximately 0.438 nm, close to the gel phase centered at approximately 0.425 nm and distinct from a broad peak centered at 0.457 nm observed for a liquid-crystal phase at 80 degrees C. The quasicrystalline phase coexisted with gel and fluid phase of the pure phospholipid. An analysis of the small-angle x-ray scattering intensity profiles indicated a stoichiometry of one glucosphingolipid per two phospholipid molecules in the complex. Structural transitions monitored in cooling scans by synchrotron x-ray diffraction indicated that a cubic phase transforms initially into a lamellar gel. Thermal studies showed that the gel phase subsequently relaxes into the quasicrystalline phase in an exothermic transition. Electron spin resonance spectroscopy using spin labels located at positions 7, 12, and 16 carbons of phospholipid hydrocarbon chains indicated that order and motional constraints at the 7 and 12 positions were indistinguishable between gel and quasicrystalline phases but there was a significant decrease in order and increase in rate of motion at the 16 position on transformation to the quasicrystalline phase. The results are interpreted as an arrangement of polar groups of the complex in a crystalline array and a quasicrystalline packing of the hydrocarbon chains predicated by packing problems in the bilayer core requiring disordering of the highly asymmetric chains. The possible involvement of quasicrystalline phases in formation of membrane rafts is considered.  相似文献   

5.
N,N,N-Trialkylammonioundecahydrododecaborates (1-), a novel class of compounds of interest for use as anions in ionic liquids, interact with DPPC liposomes. Increasing compound concentration causes an increasing negative ζ potential. Dissociation constants demonstrate that the binding capacity increases strongly with longer chain length. N,N,N-Trialkylammonioundecahydrododecaborates with longer alkyl chains show a detergent-like behavior: the compounds incorporate into the liposome membrane and differential scanning calorimetric experiment show already low concentrations cause a complete disappearance of the peak representing the gel-to-liquid crystalline phase transition. In contrast, compounds with shorter alkyl chains only interact with the headgroups of the lipids. Investigations by means of cryo-TEM reveal that all derivatives induce significant morphological changes of the liposomes. N,N,N-Trialkylammonioundecahydrododecaborates with short alkyl chains produce large bilayer sheets, whereas those with longer alkyl chains tend to induce the formation of open or multi-layered liposomes. We propose that the binding of N,N,N-trialkylammonioundecahydrododecaborates is mainly due to electrostatic interactions between the doubly negatively charged cluster unit and the positively charged choline headgroup; the positively charged ammonium group might be in contact with the deeper-lying negatively charged phosphate. For N,N,N-trialkylammonioundecahydrododecaborates with longer alkyl chains hydrophobic interactions with the non-polar hydrocarbon part of the membrane constitute an additional important driving force for the association of the compounds to the lipid bilayer.  相似文献   

6.
The role carbohydrate moieties play in determining the structure and energetics of glycolipid model membranes has been investigated by small- and wide-angle X-ray scattering, differential scanning densitometry (DSD), and differential scanning microcalorimetry (DSC). The dependence of a variety of thermodynamic and structural parameters on the stereochemistry of the OH groups in the pyranose ring and on the size of the sugar head group has been studied by using an homologous series of synthetic stereochemically uniform glyceroglycolipids having glucose, galactose, mannose, maltose, or trimaltose head groups and saturated ether-linked alkyl chains with 10, 12, 14, 16, or 18 carbon atoms per chain. The combined structural and thermodynamic data indicate that stereochemical changes of a single OH group in the pyranose ring can cause dramatic alterations in the stability and in the nature of the phase transitions of the membranes. The second equally important determinant of lipid interactions in the membrane is the size of the head group. A comparison of lipids with glucose, maltose, or trimaltose head groups and identical hydrophobic moieties has shown that increasing the size of the neutral carbohydrate head group strongly favors the bilayer-forming tendency of the glycolipids. These experimental results provide a verification of the geometric model advanced by Israelachvili et al. (1980) [Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980) Q. Rev. Biophys. 13, 121-200] to explain the preferences lipids exhibit for certain structures. Generally galactose head groups confer highest stability on the multilamellar model membranes as judged on the basis of the chain-melting transition. This is an interesting aspect in view of the fact that galactose moieties are frequently observed in membranes of thermophilic organisms. Glucose head groups provide lower stability but increase the number of stable intermediate structures that the corresponding lipids can adopt. Galactolipids do not even assume a stable intermediate L alpha phase for lipids with short chain length but perform only Lc----HII transitions in the first heating. The C2 isomer, mannose, modifies the phase preference in such a manner that only L beta----HII changes can occur. Maltose and trimaltose head groups prevent the adoption of the HII phase and permit only L beta----L alpha phase changes. The DSD studies resulted in a quantitative estimate for the volume change associated with the L alpha----HII transition of 14-Glc. The value of delta v = 0.005 mL/g supports the view that the volume difference between L alpha and HII is minute.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Properties of the aqueous dispersions of n-octadecylphosphocholine are examined by differential scanning calorimetry, fluorescence depolarization, light scattering, 31P-NMR, pig pancreatic phospholipase A2 binding, and X-ray diffraction. On heating, these dispersions exhibit a sharp lamellar to micelle transition at 20.5°C. The lamellar phase consists of frozen (gel-state) alkyl chains which do not bind phospholipase A2. The kinetics of the transition are asymmetric: the micelle to lamellar transition is very slow and the lamellar to micelle transition is fast. It is suggested that the lamellar phase is a frozen chain bilayer in which the chains interdigitate.  相似文献   

8.
The mechanism of the subtransitions (Lc to L beta') in L-dipalmitoylphosphatidylcholine bilayers in excess water has been investigated by time-resolved X-ray diffraction using synchrotron radiation. The temperature dependence of the diffraction patterns closely correlate with the asymmetric excess specific heat variation recorded by differential scanning calorimetry. During the subtransition two prominent wide-angle reflections, characteristic of the low-temperature crystalline phase, Lc, gradually change such that a sharp peak at a spacing of 0.430 nm decreases in intensity and ultimately disappears while a broader peak initially located at 0.375 nm progressively shifts to an eventual spacing of 0.410 nm. This behaviour is interpreted as a lateral deformation of the acyl chain packing subcell as the chains begin to rotate until a state is reached where the chains pack on a regular hexagonal array characteristic of the L beta phase. An increase in lamellar repeat distance from 6.0 to 6.4 nm takes place simultaneously with the acyl chain rearrangement at relatively low (5 K/min) as well as high (6 K/s) heating rates. As judged from the shape of the wide-angle peak, transformation to L beta' phase occurs some minutes after transition to the L beta phase. The X-ray data characterise the subtransition as a continuous (second order) phase transition in which a presumably orthorhombic subcell is transformed into a hexagonal subcell in a gradual process. In temperature jump experiments at 6 K/s between 0 degree C and 80 degrees C the relaxation time of the subtransition was found to be about 5 s while the relaxation time of the main gel to liquid-crystalline transition was about 2 s.  相似文献   

9.
Suspensions of dipalmitoylphosphatidylglycerol (DPPG) have been analyzed by differential scanning calorimetry, equilibrium and differential scanning dilatometry, and X-ray diffraction techniques. After the DPPG suspensions are stored several days at 2 degrees C, a new phase transition is observed at a lower temperature than either the main transition or the pretransition. This subtransition has an enthalpy of about 6 kcal/mol and occurs at about 20 degrees C, the exact temperature depending on the buffer used. The lipid partial specific volume increases by 0.035 mL/g upon warming through the subtransition. X-ray diffraction patterns from suspensions in the subgel phase contain orders of a lamellar repeat and several additional sharp and broad wide-angle reflections between 8 and 2 A. As the water content in the specimen is reduced, the lamellar repeat period decreases, whereas the spacings and intensities of these additional wide-angle reflections are unchanged. These data indicate that on incubation at 2 degrees C the lipid molecules crystallize in the plane of each bilayer. X-ray experiments also show that this subgel phase converts to the normal L beta' gel phase above the subtransition.  相似文献   

10.
Four synthesized biocidal guanidine hydrochloride polymers with different alkyl chain length, including polyhexamethylene guanidine hydrochloride and its three new analogs, were used to investigate their interactions with phospholipids vesicles mimicking bacterial membrane. Characterization was conducted by using fluorescence dye leakage, isothermal titration calorimetry, and differential scanning calorimetry. The results showed that the gradually lengthened alkyl chain of the polymer increased the biocidal activity, accompanied with the increased dye leakage rate and the increased binding constant and energy change value of polymer-membrane interaction. The polymer-membrane interaction induced the change of pretransition and main phase transition (decreased temperature and increased width) of phospholipids vesicles, suggesting the conformational change in the phospholipids headgroups and disordering in the hydrophobic regions of lipid membranes. The above information revealed that the membrane disruption actions of guanidine hydrochloride polymers are the results of the polymer's strong binding to the phospholipids membrane and the subsequent perturbations of the polar headgroups and hydrophobic core region of the phospholipids membrane. The alkyl chain structure significantly affects the binding constant and energy change value of the polymer-membrane interactions and the perturbation extent of the phospholipids membrane, which lead to the different biocidal activity of the polymer analogs. This work provides important information about the membrane disruption action mechanism of biocidal guanidine hydrochloride polymers.  相似文献   

11.
We have studied the physical properties of aqueous dispersions of 1,2-sn- and 2,3-sn-didodecyl-beta-D-glucopyranosyl glycerols, as well as their diastereomeric mixture, using differential scanning calorimetry and low angle x-ray diffraction. Upon heating, both the chiral lipids and the diastereomeric mixture exhibit characteristically energetic L beta/L alpha phase transitions at 31.7-32.8 degrees C and two or three weakly energetic thermal events between 49 degrees C and 89 degrees C. In the diastereomeric mixture and the 1,2-sn glycerol derivative, these higher temperature endotherms correspond to the formation of, and interconversions between, several nonlamellar structures and have been assigned to L alpha/QIIa, QIIa/QIIb, and QIIb/HII phase transitions, respectively. The cubic phases QIIa and QIIb, whose cell lattice parameters are strongly temperature dependent, can be identified as belonging to space groups Ia3d and Pn3m/Pn3, respectively. In the equivalent 2,3-sn glucolipid, the QIIa phase is not observed and only two transitions are seen at 49 degrees C and 77 degrees C, which are identified as L alpha/QIIb and QIIb/HII phase transitions, respectively. These phase transitions temperatures are some 10 degrees C lower than those of the corresponding phase transitions observed in the diastereomeric mixture and the 1,2-sn glycerol derivative. On cooling, all three lipids exhibit a minor higher temperature exothermic event, which can be assigned to a HII/QIIb phase transition. An exothermic L alpha/L beta phase transition is observed at 30-31 degrees C. A shoulder is sometimes discernible on the high temperature side of the L alpha/L beta event, which may originate from a QIIb/L alpha phase transition prior to the freezing of the hydrocarbon chains. None of the lipids show evidence of a QIIa phase on cooling. No additional exothermic transitions are observed on further cooling to -3 degrees C. However, after nucleation at 0 degrees C followed by a short period of annealing at 22 degrees C, the 1,2-sn glucolipid forms an Lc phase that converts to an L alpha phase at 39.5 degrees C on heating. Neither the diastereomeric mixture nor the 2,3-sn glycerol derivative shows such behavior even after extended periods of annealing. Our results suggest that the differences in the phase behavior of these glycolipid isomers may not be attributable to headgroup size per se, but rather to differences in the stereochemistry of the lipid polar/apolar interfacial region, which consequently effects hydrogen-bonding, hydration, and the hydrophilic/hydrophobic balance.  相似文献   

12.
R M Epand 《Biochemistry》1985,24(25):7092-7095
The bilayer to hexagonal phase transition temperatures of dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylethanolamine are 65.6 and 71.4 degrees C, respectively. Using high-sensitivity differential scanning calorimetry, I have shown that these transition temperatures are extremely sensitive to the presence of small amounts of other lipid components. For example, at a mole fraction of only 0.01, dilinolenin lowers the bilayer to hexagonal phase transition temperature of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine by 8.5 degrees C. Other diacylglycerols have similar effects on this transition temperature, although the degree of unsaturation of the acyl chains has some effect, with distearin being less potent. In comparison, the 20-carbon alkane eicosane lowers this transition temperature by 5 degrees C, while palmitoyl-lysolecithin raises it by 2.5 degrees C. Similar effects of these additives on the bilayer to to hexagonal phase transition temperature are observed with dielaidoylphosphatidylethanolamine. At these concentrations of additive, there is no effect on the gel-state to liquid-crystalline-state transition temperature. The observed shifts in the temperature of the bilayer to the hexagonal phase transition can be qualitatively interpreted in terms of the effects of these additives on the hydrophilic surface area and on the hydrophobic volume. Substances expanding the hydrophobic domain promote hexagonal phase formation and lower the bilayer to hexagonal phase transition temperature. The sensitivity of the bilayer to hexagonal phase transition temperature to the presence of additives is at least as great as that which has been observed for any other lipid phase transition.  相似文献   

13.
Cold plasma treatment is used to modify the cellulosic fibers for a variety of applications. The grafting of softwood unbleached (UBP) and bleached (BP) kraft pulp fibers has been performed under the action of cold plasma discharges, using different kinds of fatty acids. The grafted samples are characterized by FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), termogravimetry (TG-DTG) and X-ray diffraction (XRD). All these methods confirm the morphological and structural changes after plasma treatment which determines the modification in cellulosic fiber properties. The active centers created within the cellulose chains by plasma treatment were used to initiate grafting reactions with fatty acids. Such modification is useful to enhance the fibers properties such as softness and to change hydrophilic/hydrophobic balance.  相似文献   

14.
To elucidate the interaction among the molecules which constitute intercellular lipids of stratum corneum, the phase diagrams in the binary mixtures of N-octadecanoyl-phytosphingosine (CER)/stearic acid (SA) and CER/cholesterol (CHOL) were studied by differential scanning calorimetry and by small- and wide-angle X-ray diffraction. These phase diagrams are mostly expressed by a eutectic type one. However, from their detailed analyses, it was revealed that in the phase diagram of CER/SA a new solid structure is formed just above the eutectic temperature. The lamellar spacing of the new structure is nearly equal to the length given by the sum of the two molecules of CER and/or SA, that is, in the lipid bilayer the hydrocarbon chains of CER and SA lie almost perpendicular to the lipid bilayer surface and the two kinds of molecules distribute homogeneously. On the other hand, in the binary mixture of CER/CHOL, CHOL molecules are apt to be isolated from the mixture. In a ternary mixture composed of equimolar lipids of CER, CHOL and SA, it was found that a pseudo-hexagonal structure takes place even in the solid state. This fact indicates that the three components are miscible and the hydrocarbon chains lie perpendicular to the lipid bilayer surface. We can draw the conclusion that the multi-component mixtures containing ceramide are apt to form the lamellar structure where even in the solid state the hydrocarbon chains lie perpendicular to the lipid bilayer surface and the components with hydrocarbon chains distribute homogeneously.  相似文献   

15.
We report on highly ordered oblique self-assemblies in ionic complexes of PEGylated triple-tail lipids and cationic polypeptides, as directed by side-chain crystallization, demonstrating also reversible oblique-to-hexagonal order-order transitions upon melting of the side chains. This is achieved in bulk by complexing cationic homopolypeptides, poly-l-lysine (PLys), poly-l-arginine (PArg), and poly-l-histidine (PHis), in stoichiometric amounts with anionic lipids incorporating two hydrophobic alkyl tails and one hydrophilic polyethylene glycol (PEG) tail in a star-shaped A(2)B geometry. Based on Fourier transform infrared spectroscopy (FTIR), the PLys and PArg complexes fold into α-helical conformation. Aiming to periodicities at different length scales, that is, hierarchies, the PEG tails were selected to control the separation of the polypeptide helices in one direction while the alkyl tails determine the distance between the hydrophilic polypeptide/PEG layers, resulting in an oblique arrangement of the helices. We expect that the high overall order, where the self-assembled domains are in 2D registry, is an outcome of a favorable interplay of plasticization due to the hydrophobic and hydrophilic lipid tails combined with the shape persistency of the peptide helices and the crystallization of the lipid alkyl chains. Upon heating the complexes over the melting temperature of the alkyl tails, an order-order transition from oblique to hexagonal columnar morphology was observed. This transition is reversible, that is, the oblique structure with 2D correlation of the helices is fully returned upon cooling, implying that the alkyl tail crystallization guides the structure formation. Also PHis complex forms an oblique self-assembly. However, instead of α-helices, FTIR suggests formation of helical structures lacking intramolecular hydrogen bonds, stabilized by steric crowding of the lipid. The current study exploits competition between the soft and harder domains, which teaches on concepts toward well-defined polypeptide-based materials.  相似文献   

16.
Amantadine and tromantadine are agents used against influenza and herpes infections, respectively. Tromantadine raises the bilayer to hexagonal phase transition temperature of synthetic phosphatidylethanolamines and is less disruptive to phospholipid packing. Tromantadine acts similar to cyclosporin A, previously demonstrated to inhibit viral-induced cell-cell fusion. We suggest the balance between the hydrophobic and hydrophilic group sizes would allow tromantadine to prevent membrane fusion more than amantadine and thus inhibit infection by viruses such as Herpes, which fuse with the plasma membrane. Study of agents which stabilize the bilayer phase of membranes may lead to efficacious inhibitors of viral infections requiring cell fusion events.Abbreviations DEPE dielaidoyl phosphatidylethanolamine - POPE 1-palmitoyl-2-oleoyl phosphatidylethanolamine - DMPC dimyristoyl phosphatidylcholine - DSC differential scanning calorimetry - PIPES piperazine-N,N-bis(2-ethanesulphonic acid) - NMR nuclear magnetic resonance - tromantadine N-1-adamantyl-N-[2-(dimethylamino)ethoxy]a(ethoxy]acetamide-hydrochloride - amantadine (1-adamantamine)-hydrochloride - HSV Herpes Simplex Virus  相似文献   

17.
The effects of stigmasterol, sitosterol, campesterol, and cholesterol on the phase properties of dipalmitoylphosphatidylcholine bilayers have been compared by differential scanning calorimetry and x-ray diffraction. The sterols were equally effective at progressively reducing the cooperativity and the enthalpy of the dipalmitoylphosphatidylcholine phase transition as their concentrations in the bilayer were increased. Moreover, both differential scanning calorimetry and x-ray diffraction indicated that the dipalmitoylphosphatidylcholine transition was eliminated by each of the sterols when they were present at a concentration of 33 mole%. This indicates that the interaction between phospholipid and both plant and animal sterols is stoichiometric, each sterol associating with two phospholipid molecules. At concentrations above 33 mole% the sterols were no longer completely solvated by the phospholipid, and sterol-sterol interaction resulted. Cholesterol, even at concentrations as high as 50 mole%, did not disrupt the lamellar structure of the bilayer. When these high concentrations of plant sterols were intercalated into the phospholipid, crystallinity, which presumably derives from sterol-sterol interaction, was detectable in the bilayer by x-ray diffraction. This observation is consistent with previous reports to the effect that the C17 chains of the plant sterols render them less soluble in phospholipid than is cholesterol. It is clear that this solvation difference is of insufficient magnitude to affect the stoichiometry of dipalmitoylphosphatidylcholine-sterol interaction, but it could well account for the less effective modulation of lipid bilayer permeability exhibited by plant sterols in comparison with cholesterol.  相似文献   

18.
Bis(monoacylglycero)phosphate (BMP) reveals an unusual sn-1,sn-1' stereoconfiguration of glycerophosphate. We synthesized sn-(3-myristoyl-2-hydroxy)glycerol-1-phospho-sn-1'-(3'-myristoyl-2'-hydroxy)glycerol (1,1'-DMBMP) and characterized the thermotropic phase behavior and membrane structure, in comparison with those of the corresponding sn-3:sn-1' stereoisomer (3,1'-DMBMP), by means of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS, respectively), pressure-area (pi-A) isotherms, epifluorescence microscopy of monolayers, and molecular dynamics (MD) simulations. In DSC, these lipids exhibited weakly energetic broad peaks with an onset temperature of 9 degrees C for 1,1'-DMBMP and 18 degrees C for 3,1'-DMBMP. In addition, a highly cooperative, strongly energetic transition peak was observed at approximately 40 degrees C for 1,1'-DMBMP and approximately 42 degrees C for 3,1'-DMBMP. These results are supported by the observation that 1,1'-DMBMP exhibited a larger phase transition pressure (pi(c)) than 3,1'-DMBMP. Small- and wide-angle X-ray scattering measurements identified these small and large energetic transitions as a quasi-crystalline (L(c1))-quasi-crystalline with different tilt angle (L(c2)) phase transition and an L(c2)-L(alpha) main phase transition, respectively. X-ray measurements also revealed that these DMBMPs undergo an unbinding at the main phase transition temperature. The MD simulations estimated stronger hydrogen bonding formation in the 3,1'-DMBMP membrane than in 1,1'-DMBMP, supporting the experimental data.  相似文献   

19.
Abuja PM  Zenz A  Trabi M  Craik DJ  Lohner K 《FEBS letters》2004,566(1-3):301-306
The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, Tm, was unchanged, but additional phase transitions appeared above Tm. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small- and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTD-1 above Tm, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption.  相似文献   

20.
The ultrasonic absorption, alpha lambda, as a function of temperature and frequency was determined in large unilamellar vesicles (LUVs) in which specific phospholipid side chains were deuterated. Deuteration significantly altered the temperature and frequency dependence of alpha lambda. The frequency change was especially marked, with decreased frequency and broadening of the ultrasound relaxation, even with only minor changes in the phase transition temperature. Deuteration decreased the Tm and enthalpy of the lipid phase transition, as shown by differential scanning calorimetry, whereas electron spin resonance showed that at and above the lipid phase transition, no differences in the mobility as a function of temperature were observed. These results show that the observed increase in ultrasonic absorption in LUVs at the phospholipid phase transition arises from the interaction of ultrasound with the hydrophobic side chains, probably coupling with structural reorganization of small domains of molecules, a process which is maximized at the phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号