首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years much has been learned about the essential role of peroxisomes in cellular metabolism. Much less, however, is known about the permeability properties of peroxisomes although it is well established now that peroxisomes are impermeable to small molecules which implies the existence of transporters in the peroxisomal membrane. In this paper we report the identification of PMP34, a peroxisomal membrane protein belonging to the mitochondrial solute carrier family, as an adenine nucleotide transporter. This is concluded from different experimental findings including rescue of the defect in medium-chain fatty acid oxidation in Saccharomyces cerevisiae cells in which the ANT1 gene coding for Ant1p, the peroxisomal adenine nucleotide carrier, was disrupted. Furthermore, we have purified PMP34, reconstituted the protein in proteoliposomes, and provide direct proof that PMP34 is an adenine nucleotide transporter.  相似文献   

2.
Characterization of IL-2-induced murine cells which exhibit ADCC activity   总被引:1,自引:0,他引:1  
The incubation of murine splenocytes in recombinant interleukin 2 (IL-2) gives rise to both lymphokine-activated killer (LAK) cells capable of lysing fresh tumor cells and cells capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in the presence of anti-H2 allosera. A similarity between these two IL-2-induced cell populations was found. The precursors of the cells mediating these activities were shown to be ASGM1 positive, Thy 1 negative, and radiosensitive. Cells taken from the spleen, thymus, and bone marrow were able to mediate ADCC after culture in IL-2. The effector cell was either Thy 1 positive or negative and was less affected by anti-Thy 1 plus C' treatment than cells which mediated LAK activity. In addition ADCC was exhibited in IL-2-cultured splenocytes from various murine strains and correlated with their LAK activity with one exception. While IL-2-cultured C57BL/6 splenocytes exhibited LAK activity similar to that of C3H LAK cells, no ADCC activity could be demonstrated in C57BL/6 cells. Study of the difference in the ability of these two strains to mediate ADCC revealed that IL-2-induced FcR+ cells in C3H thymocytes, but not in C57BL/6 thymocytes. Based on FACS analysis and on the radiosensitivity of the induction of both FcR+ cells and ADCC, it was suggested that IL-2 was expanding a small FcR+ cell population rather than inducing an increase in FcR density on the cell surface. The relationship between the IL-2-induced ADCC mediator and other IL-2-induced cells, as well as ADCC effector cells, and the possible implications of the results for the in vivo therapy of cancer based on ADCC are discussed.  相似文献   

3.
SFKs (Src family kinases) contribute importantly to platelet function in haemostasis. SFK activity is controlled by Csk (C-terminal Src kinase), which phosphorylates a C-terminal tyrosine residue on SFKs, resulting in inhibition of SFK activity. Csk is recruited to sites of SFK activity by tyrosine-phosphorylated Csk-binding proteins. Paxillin, a multidomain adaptor protein, has been shown to act as a Csk-binding protein and to inhibit Src activity during growth factor signalling. Human platelets express Hic-5, a member of the paxillin family; however, its ability to act as a Csk-binding protein has not been characterized. We sought to identify and characterize the ability of paxillin family members to act as Csk-binding proteins during platelet activation. We found that murine and human platelets differ in the complement of paxillin family members expressed. Human platelets express Hic-5, whereas murine platelets express paxillin and leupaxin in addition to Hic-5. In aggregating human platelets, Hic-5 was tyrosine phosphorylated and recruited Csk via its SH2 domains. In aggregating murine platelets, however, Csk bound preferentially to paxillin, even though both paxillin and Hic-5 were abundantly present and became tyrosine phosphorylated. The SFK Lyn, but not Src or Fyn, was associated with paxillin family members in resting and aggregated human and murine platelets. Lyn, however, was phosphorylated on its C-terminal inhibitory tyrosine residue only following platelet aggregation, which was coincident with recruitment of Csk to paxillin and/or Hic-5 in a manner dependent on prior alpha(IIb)beta3 engagement. These observations support the notion that Hic-5 and paxillin function as negative feedback regulators of SFKs in aggregated platelets and that, when both are present, paxillin is preferentially used.  相似文献   

4.
Fluorescent peroxisomal probes were developed by fusing green fluorescent protein (GFP) to the matrix peroxisomal targeting signals PTS1 and PTS2, as well as to an integral peroxisomal membrane protein (IPMP). These proteins were used to identify and characterize novel peroxisome assembly (pas) mutants in the yeast Pichia pastoris. Mutant cells lacking the PAS10 gene mislocalized both PTS1-GFP and PTS2-GFP to the cytoplasm but did incorporate IPMP-GFP into peroxisome membranes. Similar distributions were observed for endogenous peroxisomal matrix and membrane proteins. While peroxisomes from translocation-competent pas mutants sediment in sucrose gradients at the density of normal peroxisomes, >98% of peroxisomes from pas10 cells migrated to a much lower density and had an extremely low ratio of matrix:membrane protein. These data indicate that Pas10p plays an important role in protein translocation across the peroxisome membrane. Consistent with this hypothesis, we find that Pas10p is an integral protein of the peroxisome membrane. In addition, Pas10p contains a cytoplasmically-oriented C3HC4 zinc binding domain that is essential for its biological activity.  相似文献   

5.
Both human synovial tissue in culture and lectin-stimulated mononuclear leucocytes produced a protein that induced proteoglycan resorption in explants of bovine nasal cartilage and human articular cartilage. On gel filtration the protein had Mr 16000-20000 and on isoelectric focusing its pI was 5.2-5.3. The protein corresponded to catabolin, which has previously been identified as a product of cultured porcine synovial tissue and mononuclear leucocytes. The action of partially purified human catabolin was not inhibited by cortisol, although the activity of the leucocyte supernatants from which it had been isolated was inhibited. For this reason it is not possible to be sure that the active factor detected in the bioassay of the crude leucocyte culture supernatants is in fact catabolin.  相似文献   

6.
7.
Group A human rotavirus strains D, Wa, DS-1, and P were originally recovered from children with diarrhea. In an attempt to attenuate virulent, wild-type human rotaviruses of major epidemiological importance for use in a live oral vaccine, two reference rotavirus strains, D and DS-1, and two laboratory-generated reassortants, Wa x DS-1 and Wa x P, were subjected to cold adaptation. Collectively, these viruses provide antigenic coverage for both of the clinically important rotavirus VP4 antigens and three of the four important rotavirus VP7 antigens. Mutants of each of these rotaviruses were selected during successive serial passage in primary African green monkey kidney cells at progressively lower suboptimal temperatures (30, 28, and 26 degrees C). The genotype of each mutant appeared to be indistinguishable from that of its wild-type, parental virus. The mutants recovered after 10 serial passages at 30 degrees C exhibited both temperature sensitivity of plaque formation (i.e., a ts phenotype) and the ability to form plaques efficiently at suboptimal temperature (i.e., a cold adaptation [ca] phenotype), in contrast to parental wild-type rotavirus. The succeeding set of 10 serial passages at 28 degrees C selected mutants that exhibited an increased degree of cold adaptation, and three of the mutants exhibited an associated increase in temperature sensitivity. Finally, in the case of three of the strains, the third successive serial passage series, which was performed at 26 degrees C, selected for mutants with an even greater degree of cold adaptation than the previous series and was associated with greater temperature sensitivity in one instance. It appeared that each of the viruses sustained a minimum of four to five mutations during the total selection procedure. The ultimate identification of candidate vaccine viruses that exhibit the desired level of attenuation, immunogenicity, and protective efficacy needed for immunoprophylaxis will require evaluation of these mutants in susceptible humans.  相似文献   

8.
9.
PEX19 has been shown to play a central role in the early steps of peroxisomal membrane synthesis. Computational database analysis of the PEX19 sequence revealed three different conserved domains: D1 (aa 1--87), D2 (aa 88--272), and D3 (aa 273--299). However, these domains have not yet been linked to specific biological functions. We elected to functionally characterize the proteins derived from two naturally occurring PEX19 splice variants: PEX19DeltaE2 lacking the N-terminal domain D1 and PEX19DeltaE8 lacking the domain D3. Both interact with peroxisomal ABC transporters (ALDP, ALDRP, PMP70) and with full-length PEX3 as shown by in vitro protein interaction studies. PEX19DeltaE8 also interacts with a PEX3 protein lacking the peroxisomal targeting region located at the N-terminus (Delta66aaPEX3), whereas PEX19DeltaE2 does not. Functional complementation studies in PEX19-deficient human fibroblasts revealed that transfection of PEX19DeltaE8-cDNA leads to restoration of both peroxisomal membranes and of functional peroxisomes, whereas transfection of PEX19DeltaE2-cDNA does not restore peroxisomal biogenesis. Human PEX19 is partly farnesylated in vitro and in vivo. The farnesylation consensus motif CLIM is located in the PEX19 domain D3. The finding that the protein derived from the splice variant lacking D3 is able to interact with several peroxisomal membrane proteins and to restore peroxisomal biogenesis challenges the previous assumption that farnesylation of PEX19 is essential for its biological functionality. The data presented demonstrate a considerable functional diversity of the proteins encoded by two PEX19 splice variants and thereby provide first experimental evidence for specific biological functions of the different predicted domains of the PEX19 protein.  相似文献   

10.
11.
The in vitro proliferative response to autoantigenic mouse thyroglobulin (MTg) of lymph node cells (LNC) from thyroiditis-susceptible (high-responder) CBA/J (H-2k) mice was further characterized. The relatively weak response was enhanced by adding irradiated spleen cells from normal syngeneic mice to cultures of responding LNC. Furthermore, the adjuvant used for immunization was found to influence the magnitude of the response. Results of experiments varying both the adjuvant and the route of immunization (footpad versus subcutaneous) demonstrated that marked proliferative response to MTg in vitro was not necessarily a predictor of the severity of disease. However, the capacity to proliferate in response to MTg correlated with disease susceptibility, as reported previously. The response to MTg was dependent on Thy-1+, Lyt-1+2- cells and was inhibited by monoclonal I-A antibodies. Thus, proliferation is mediated by T cells of the helper/amplifier phenotype recognizing the autoantigen in association with Ia molecules. The determinants on human thyroglobulin (HTg) and MTg stimulating the proliferative responses of LNC from thyroiditis-susceptible and thyroiditis-resistant (low-responder) BALB/c (H-2d) mice were found to differ. Cells from resistant mice proliferated only in response to foreign determinants on HTg and not to shared or mouse-specific epitopes of MTg, whereas susceptible mice had T cells reactive to shared determinants expressed on MTg and HTg as well as to foreign determinants on HTg.  相似文献   

12.
HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.  相似文献   

13.
The minimal sequence requirement for a peroxisome-targeting signal was investigated using an in vitro import system. Carboxyl-terminal sequences Ser-Lys-Leu (SKL) and Leu-Gln-Ser-Lys-Leu (LQSKL) of acyl-CoA oxidase (AOX) directed to peroxisomes the fused proteins with import-incompetent forms of AOX and catalase that had been truncated, implying that the SKL tripeptide functions as a targeting signal. Elimination of the entire SKL sequence or deletion of any 1 or 2 amino acids in the sequence abolished the import activity of AOX. Substitution of alanine for serine did not affect the import activity. Topogenic activity was retained when lysine was mutated to either arginine or histidine, whereas mutation to glutamic acid completely abolished the activity. A synthetic peptide comprising the carboxyl-terminal 10 amino acid residues of AOX inhibited the import of the authentic AOX polypeptide, whereas other peptides in which SKL was mutated, deleted, or internally located were not effective. The uptake of AOX was little affected by the peptide with an amidated alpha-carboxyl group. These results strongly suggest that the carboxyl-terminal SKL motif sequence (Ser/Ala)-(Lys/Arg/His)-Leu functions as a topogenic signal in translocation of proteins into peroxisomes, requiring the whole tripeptide sequence with a free alpha-COOH group at the carboxyl terminus.  相似文献   

14.
Peroxisomal membrane proteins (PMPs) from the Swiss-Webster mouse are analyzed and compared to those of rats and humans using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. A purification procedure for fresh mouse, rat, or human biopsy liver which enriches peroxisomal/mitochondrial marker enzyme ratios over 100-fold is characterized. When analyzed by SDS-PAGE, membranes of purified liver peroxisomes are shown to contain the same complement of 145-, 70-, 55-, 36-, and 22-kDa PMPs in rats, mice, and humans. A rabbit polyclonal antibody raised against mouse peroxisomal membranes demonstrates immunoreactivity to 145- and 70-kDa proteins in fresh liver homogenates from all three species and in control or Zellweger syndrome fibroblasts from humans. Human autopsy or placental tissues which were refrigerated before analysis exhibited 105-, 55-, and 36-kDa peptides which may be derived from the 145- and 70-kDa peptides. Such conversions, if related to degradation, may explain difficulties in purifying peroxisomes from human autopsy specimens. Variable amounts of the 55-kDa peptide also occurred in mouse adrenal and lung, and the conversion of higher to lower molecular weight PMPs could not be demonstrated by in vitro incubation of mouse liver. Further definition of the structure and variability of mammalian PMPs should be helpful in understanding polyenzymopathies such as Zellweger syndrome.  相似文献   

15.
16.
Peroxisomes are multipurpose organelles present in nearly all eukaryotic cells. All peroxisomale matrix and membrane proteins are synthesized in the cytoplasm. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are poorly understood. The 70-kDa peroxisomal integral membrane protein (PMP70) is one of the proteins located in the human peroxisome membrane. PMP70 belongs to the family of ATP-binding cassette (ABC) transporter proteins. It consists of six transmembrane domains and an ATP-binding fold in the cytosol. Here we describe that efficient peroxisomal targeting of human PMP70 depends on three targeting elements in the amino-terminal protein region, namely amino acids 61 to 80 located in the cytosol as well as the first and second transmembrane domains. Furthermore, peroxin 19 (PEX19) interactions are not required for targeting human PMP70 to peroxisomes. PEX19 does not specifically bind to the targeting elements of human PMP70.  相似文献   

17.
18.
This paper presents a multidimensional profile of the human serum proteome, produced by a two-dimensional protein fractionation system based on liquid chromatography followed by characterization with capillary electrophoresis (CE). The first-dimension separation was done by chromatofocusing over a pH range from 8.5 to 4.0, where proteins were separated by their isoelectric points (pI). In this dimension, fractions were collected based on pH. The first-dimension pI fractions were then resolved in the second dimension by high-resolution, reversed-phase chromatography with a gradient of trifluoroacetic acid (TFA) in acetonitrile and TFA in water. A selected protein fraction collected from the second dimension by time was characterized by CE for molecular-weight estimation and for presence of isoforms. Molecular-weight estimation was done by sodium dodecyl sulfate capillary gel electrophoresis, where proteins were separated in the range of 10,000-225,000 Da. Detection of isoforms was done by capillary isoelectric focusing over a pH range of 3-10. A selected second-dimension fraction that contained the putative serum iron-binding protein transferrin was analyzed by these two CE techniques for molecular-weight determination and the presence of isoforms. The combination of two-dimensional protein fractionation and CE characterization represents an advanced tool for proteomics.  相似文献   

19.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are slowly oxidized and may therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important roles. Here we have cloned and characterized a peroxisomal acyl-CoA thioesterase from mouse, named PTE-2 (peroxisomal acyl-CoA thioesterase 2). PTE-2 is ubiquitously expressed and induced at mRNA level by treatment with the peroxisome proliferator WY-14,643 and fasting. Induction seen by these treatments was dependent on the peroxisome proliferator-activated receptor alpha. Recombinant PTE-2 showed a broad chain length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-CoAs, and other substrates including trihydroxycoprostanoyl-CoA, hydroxymethylglutaryl-CoA, and branched chain acyl-CoAs, all of which are present in peroxisomes. Highest activities were found with the CoA esters of primary bile acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2 closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to incubations containing isolated mouse liver peroxisomes strongly inhibited bile acid-CoA:amino acid N-acyltransferase activity, suggesting that this thioesterase can interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a key regulator of peroxisomal lipid metabolism.  相似文献   

20.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ ? Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH· scavenging, ABTS√+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+ ? Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, α-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号