首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gastrointestinal tract (GIT) of adult mammals is colonized by a complex and dynamic community of microorganisms. Most protection against potential pathogens occurs via a mucosal immune system involving mechanisms of innate immunity as well as a secondary lymphoid organ, the gut-associated lymphoid tissue (GALT). However, the bacterial community also supports its host against invasion by potential pathogens, by a mechanism called 'colonization resistance'. Young animals need time to develop both a complex bacterial community and their immature GIT immune system, and until such developments have taken place, they are vulnerable to the presence of potential pathogens in their GIT. Initial protection against invading pathogens is provided by milk and colostrum, which contain antibodies and other bioactive components. At weaning, with the introduction of solid food and deprivation of the mother's milk, the young must also cope with a rapidly changing microbiota. The colonizing microbiota not only provides colonization resistance to potentially pathogenic bacteria. It also has a major role in the development of the intestinal immune system, both in terms of GALT development and mucosal immunity, and the induction of oral tolerance. Studies using gnotobiotic animal models have revealed that the presence of even limited numbers of the indigenous microbiota may influence the GIT immune system. Regulation of the composition of the GIT microbiota, e.g. by the use of pre- and probiotics, offers the possibility to influence the development of mucosal, and also systemic immunity.  相似文献   

2.
The gut associated lymphoid tissue (GALT) should protect intestinal mucosa against pathogens, but also avoid hypersensitivity reactions to food proteins, normal bacterial flora and other environmental macromolecules. The interaction between epithelial cells and microflora is fundamental to establish gut mucosal barrier and GALT development. The normal colonization of intestine by commensal bacteria is thus crucial for a correct development of mucosal immune system. Probiotic bacteria are normal inhabitants of microflora and may confer health benefits to the host. The modification of the intestinal microflora towards a healthier probiotics enriched microflora may generate beneficial mucosal immunomodulatory effects and may represent a new strategy to cure intestinal and allergic diseases. The health benefits may be specific for different probiotic strains. Ongoing research is providing new insights into the probiotic beneficial effects and related mechanisms. This review represents an update of immunomodulatory activity of different probiotics and of the more accredited mechanisms underlying such activities. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

3.
Intestinal bacteria are required for development of gut-associated lymphoid tissues (GALT), which mediate a variety of host immune functions, such as mucosal immunity and oral tolerance. In rabbits, the intestinal microflora are also required for developing the preimmune Ab repertoire by promoting somatic diversification of Ig genes in B cells that have migrated to GALT. We studied the mechanism of bacteria-induced GALT development. Bacteria were introduced into rabbits in which the appendix had been rendered germfree by microsurgery (we refer to these rabbits as germfree-appendix rabbits). We then identified specific members of the intestinal flora that promote GALT development. The combination of Bacteroides fragilis and Bacillus subtilis consistently promoted GALT development and led to development of the preimmune Ab repertoire, as shown by an increase in somatic diversification of VDJ-C micro genes in appendix B cells. Neither species alone consistently induced GALT development, nor did Clostridium subterminale, Escherichia coli, or Staphylococcus epidermidis. B. fragilis, which by itself is immunogenic, did not promote GALT development; hence, GALT development in rabbits does not appear to be the result of an Ag-specific immune response. To identify bacterial pathways required for GALT development, we introduced B. fragilis along with stress-response mutants of B. subtilis into germfree-appendix rabbits. We identified two Spo0A-controlled stress responses, sporulation and secretion of the protein YqxM, which are required for GALT development. We conclude that specific members of the commensal, intestinal flora drive GALT development through a specific subset of stress responses.  相似文献   

4.
Immunologists typically study the immune responses induced in the spleen or peripheral lymph nodes after parenteral immunization with antigen and poorly defined experimental adjuvants. However, most antigens enter the body through mucosal surfaces. It is now clear that the microenvironment in these mucosal barriers has a marked influence on the immune response that ultimately ensues. Nowhere is the microenvironment more influential than in the gut-associated lymphoid tissue (GALT). The GALT must constantly distinguish harmless antigens that are present in food or on commensal bacteria from pathogenic assault by microbes. It is perhaps not surprising, then, that the GALT contains more lymphocytes than all of the secondary lymphoid organs combined.  相似文献   

5.
6.
BACKGROUND: Although the majority of drug-na?ve HIV-infected patients develop acquired immunodeficiency syndrome (AIDS), a small percentage remains asymptomatic without therapeutic intervention. METHODS: We have utilized the simian immunodeficiency virus (SIV)-infected rhesus macaque model to gain insights into the molecular mechanisms of long-term protection against simian AIDS. RESULTS: Chronically SIV-infected macaques with disease progression had high viral loads and CD4(+) T-cell depletion in mucosal tissue and peripheral blood. These animals displayed pathologic changes in gut-associated lymphoid tissue (GALT) and mesenteric lymph node that coincided with increased expression of genes associated with interferon induction, inflammation and immune activation. In contrast, the animal with long-term asymptomatic infection suppressed viral replication and maintained CD4(+) T cells in both GALT and peripheral blood while decreasing expression of genes involved in inflammation and immune activation. CONCLUSIONS: Our findings suggest that reduced immune activation and effective repair and regeneration of mucosal tissues correlate with long-term survival in SIV-infected macaques.  相似文献   

7.
The gut-associated lymphoid tissue (GALT) is constantly exposed to a variety of Ags and must therefore decipher a large number of distinct signals at all times. Responding correctly to each set of signals is crucial. When the GALT receives signals from the intestinal flora or food Ags, it must induce a state of nonresponsiveness (mucosal tolerance). In contrast, when pathogenic bacteria invade the intestinal mucosa, it is necessary to elicit strong T and B cell responses. The GALT is therefore in the position of constantly fighting intolerance to food and the commensal flora while effectively battling infectious microbes. Determining precisely which type of response to generate in each case is key to the prevention of immune dysregulation and tissue damage.  相似文献   

8.
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11 alpha, alpha(E)beta 7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.  相似文献   

9.
Mucosae constitute the major entry for most microbial pathogens but also innocuous antigens derived from ingested food, airborne matter or commensal bacteria. A large and highly specialized innate and adaptative mucosal immune system protects the mucosal surfaces and the body interior from potential injuries from the environment. The mucosal immune system has developed a variety of immune mechanisms to discriminate between non-pathogenic and pathogenic invaders. It is able to maintain tolerance against the plethora of environmental antigens and to induce potent protective immunity to avoid mucosal colonisation and organism invasion by dangerous microbial pathogens. Mucosal immunisation with appropriate antigens and immunostimulatory molecules may induce potent protective immunity against harmful pathogens. Alternatively, mucosally-induced tolerance against auto-antigens or allergens may be generated by mucosal administration of these antigens alone or with immunomodulators potentiating regulatory responses. Here, we review the properties of the mucosal immune system and briefly discuss the advances in the development of mucosal vaccines for protection against infections and for the treatment of inflammatory disorders such as autoimmune diseases or type I allergies.  相似文献   

10.
Despite high bacterial colonization and frequent allergen contact, acute inflammatory and allergic reactions are rarely seen in the oral mucosa. Therefore we assert that immune tolerance predominates at this site and antigen presenting cells, such as dendritic cells and different T cell subtypes, serve as key players in oral mucosal tolerance induction. In this article we describe the mechanisms that lead to tolerance induced in the oral mucosa and how they differ from tolerance induced in the lower gastrointestinal tract. Furthermore we discuss ways in which novel nonparenteral approaches for immune intervention, such as allergen-specific immunotherapy applied by way of the sublingual route, might be improved to target the tolerogenic properties of the sophisticated oral mucosal immune network.  相似文献   

11.
Gut- and bronchus-associated lymphoid tissue   总被引:10,自引:0,他引:10  
Bronchus-associated and gut-associated lymphoid tissues (BALT and GALT) have both functional and morphologic similarities and are involved in seeding lung, gut, and other mucosal sites with predominantly IgA-containing B cells. Both types of lymphoid tissue are engaged in the regulation and the controlled amplification of immune responses, which vary from positive mucosal responses in both mucosae and peripheral tissues to local mucosal responses and systemic tolerance. Their further involvement in provision of cells destined to reside in the epithelial compartment of the body appears likely but requires further investigation. Their role in the provision of precursors of mucosal mast cells must also be explored further, but some participation in this event appears likely. The mucosa-associated lymphoid tissue (MALT) system appears to be integrated with the systemic immune system but may be considered as separate from it in several functional ways.  相似文献   

12.
Peripheral immune tolerance following i.v. administration of Ag has been shown to occur in the absence of B cells. Because different mechanisms have been identified for i.v. vs low dose oral tolerance and B cells are a predominant component of the gut-associated lymphoid tissue (GALT) they may play a role in tolerance induction following oral Ag. To examine the role of B cells in oral tolerance we fed low doses of OVA or myelin oligodendrocyte glycoprotein to B cell-deficient ( microMT) and wild-type C57BL/6 mice. Results showed that the GALT of naive wild-type and microMT mice was characterized by major differences in the cytokine microenvironment. Feeding low doses of 0.5 mg OVA or 250 microg myelin oligodendrocyte glycoprotein resulted in up-regulation of IL-4, IL-10, and TGF-beta in the GALT of wild-type but not microMT mice. Upon stimulation of popliteal node cells, in vitro induction of regulatory cytokines TGF-beta and IL-10 was observed in wild-type but not microMT mice. Greater protection against experimental autoimmune encephalomyelitis was found in wild-type mice. Oral tolerance in microMT and wild-type mice was found to proceed by different mechanisms. Anergy was observed from 0.5 mg to 250 ng in microMT mice but not in wild-type mice. Increased Ag was detected in the lymph of microMT mice. No cytokine-mediated suppression was found following lower doses from 100 ng to 500 pg in either group. These results demonstrate the importance of the B cell for the induction of cytokine-mediated suppression associated with low doses of Ag.  相似文献   

13.
The predictive value of acute gut-associated lymphoid tissue (GALT) CD4+ T cell depletion in lentiviral infections was assessed by comparing three animal models illustrative of the outcomes of SIV infection: pathogenic infection (SIVsmm infection of rhesus macaques (Rh)), persistent nonprogressive infection (SIVagm infection of African green monkeys (AGM)), and transient, controlled infection (SIVagm infection of Rh). Massive acute depletion of GALT CD4+ T cells was a common feature of acute SIV infection in all three models. The outcome of this mucosal CD4+ T cell depletion, however, differed substantially between the three models: in SIVsmm-infected Rh, the acute GALT CD4+ T cell depletion was persistent and continued with disease progression; in SIVagm, intestinal CD4+ T cells were partially restored during chronic infection in the context of normal levels of apoptosis and immune activation and absence of damage to the mucosal immunologic barrier; in SIVagm-infected Rh, complete control of viral replication resulted in restoration of the mucosal barrier and immune restoration. Therefore, our data support a revised paradigm wherein severe GALT CD4+ T cell depletion during acute pathogenic HIV and SIV infections of humans and Rh is necessary but neither sufficient nor predictive of disease progression, with levels of immune activation, proliferation and apoptosis being key factors involved in determining progression to AIDS.  相似文献   

14.
The gastrointestinal mucosal immune system faces unique challenges in dealing not only with fed antigens but also both commensal and pathogenic bacteria. It is tasked with digesting, transporting and using nutritional antigens while protecting the host from pathogenic organisms. As such, mechanisms that mediate effective immunity and immune tolerance are active within the gut environment. To accomplish this, the mucosal immune system has evolved sophisticated mechanisms that safeguard the integrity of the mucosal barrier. Transforming growth factor-β (TGF-β) emerges as a key mediator, balancing the tolerogenic and immunogenic forces at play in the gut. In this review, we discuss the role of TGF-β in the generation and functioning of gut lymphocyte populations. We highlight recent findings, summarize controversies, outline remaining questions and provide our personal perspectives.  相似文献   

15.
Oral mucosal immunization is a feasible and economic vaccination strategy. In order to achieve a successful oral mucosal vaccination, antigen delivery to gut immune inductive site and avoidance of oral tolerance induction should be secured. One promising approach is exploring the specific molecules expressed on the apical surfaces of M cells that have potential for antigen uptake and immune stimulation. We previously identified complement 5a receptor (C5aR) expression on human M-like cells and mouse M cells and confirmed its non-redundant role as a target receptor for antigen delivery to M cells using a model antigen. Here, we applied the OmpH ligand, which is capable of targeting the ligand-conjugated antigen to M cells to induce specific mucosal and systemic immunities against the EDIII of dengue virus (DENV). Oral immunization with the EDIII–OmpH efficiently targeted the EDIII to M cells and induced EDIII-specific immune responses comparable to those induced by co-administration of EDIII with cholera toxin (CT). Also, the enhanced responses by OmpH were characterized as Th2-skewed responses. Moreover, oral immunization using EDIII–OmpH did not induce systemic tolerance against EDIII. Collectively, we suggest that OmpH-mediated targeting of antigens to M cells could be used for an efficient oral vaccination against DENV infection.  相似文献   

16.
Mucosal administration of Ags induces specific Abs in external secretions and systemic unresponsiveness termed oral or mucosal tolerance. The dominant response depends on the species studied, the nature, dose, frequency, route of Ag application, and the use of adjuvants. The temporal sequence of Ag exposure determines the quality of the ensuing immune response; although initial mucosal Ag exposure results in systemic T cell hyporesponsiveness, pre-existing systemic responses are refractory to the tolerizing effects of mucosal Ag encounter. Mucosal and systemic humoral responses may be induced concomitantly with diminished systemic T cell responses, thereby permitting Ab-mediated containment of mucosal Ags without stimulation of the systemic immune compartment. B cell Ig isotype switching and differentiation toward IgA production share common regulatory mechanisms with the suppression of T cells. Optimization of mucosal vaccination strategies has the potential for enhancing protective immune responses and suppressing systemic responses to autoantigens desirable for the treatment of autoimmune diseases.  相似文献   

17.
The systemic immune response against orally administered antigens is suppressed (oral tolerance), and this has been postulated to avoid excess immunity against dietary constituents which are present in large amounts in the gastrointestinal tract. Taking into consideration that such orally administered protein antigens are subjected to enzymatic degradation in the gastrointestinal tract, we examined whether an enzymatic digest of milk proteins could induce oral tolerance. A tryptic digest of casein, containing mainly fragments smaller than 6000 Da, was fed to mice as a constituent of their diet. Mice fed with the casein-digest diet responded poorly to subsequent immunization with casein, indicating that oral tolerance to casein was induced in these animals. The results suggest the presence of immunosuppressive fragment(s) in the casein digest, which may be of use for preventing milk allergy.  相似文献   

18.
α4β7是一种整合素分子 ,主要介导淋巴细胞向粘膜部位的迁移和归巢 ,同时参与一些炎症反应 ,并对肠相关淋巴组织 (GAL T)的发育、粘膜部位的免疫应答等有重要作用  相似文献   

19.
Teleost intestinal immunology   总被引:1,自引:0,他引:1  
Teleosts clearly have a more diffuse gut associated lymphoid system, which is morphological and functional clearly different from the mammalian GALT. All immune cells necessary for a local immune response are abundantly present in the gut mucosa of the species studied and local immune responses can be monitored after intestinal immunization. Fish do not produce IgA, but a special mucosal IgM isotype seems to be secreted and may (partly) be the recently described IgZ/IgT. Fish produce a pIgR in their mucosal tissues but it is smaller (2 ILD) than the 4–5 ILD pIgR of higher vertebrates. Whether teleost pIgR is transcytosed and cleaved off in the same way needs further investigation, especially because a secretory component (SC) is only reported in one species. Teleosts also have high numbers of IEL, most of them are CD3-?+/CD8-α+ and have cytotoxic and/or regulatory function. Possibly many of these cells are TCRγδ cells and they may be involved in the oral tolerance induction observed in fish. Innate immune cells can be observed in the teleost gut from first feeding onwards, but B cells appear much later in mucosal compartments compared to systemic sites. Conspicuous is the very early presence of putative T cells or their precursors in the fish gut, which together with the rag-1 expression of intestinal lymphoid cells may be an indication for an extra-thymic development of certain T cells. Teleosts can develop enteritis in their antigen transporting second gut segment and epithelial cells, IEL and eosinophils/basophils seem to play a crucial role in this intestinal inflammation model. Teleost intestine can be exploited for oral vaccination strategies and probiotic immune stimulation. A variety of encapsulation methods, to protect vaccines against degradation in the foregut, are reported with promising results but in most cases they appear not to be cost effective yet. Microbiota in fish are clearly different from terrestrial animals. In the past decade a fast increasing number of papers is dedicated to the oral administration of a variety of probiotics that can have a strong health beneficial effect, but much more attention has to be paid to the immune mechanisms behind these effects. The recent development of gnotobiotic fish models may be very helpful to study the immune effects of microbiota and probiotics in teleosts.  相似文献   

20.
《FEBS letters》2014,588(8):1288-1296
The mucosal lining forms the physical and chemical barrier that protects against pathogens and hostile particles and harbors its own population of bacteria, fungi and archea, known as the microbiota. The immune system controls tolerance of this population of microorganisms that have proven to be beneficial for its host. Keeping its physical integrity and a correct balance with the microbiota, the mucosa preserves its homeostasis and its protective function and maintains host’s health. However, in some conditions, pathogens may succeed in breaching mucosal homeostasis and successfully infecting the host. In this review we will discuss the role the mucosa plays in the defense against bacterial pathogens by considering the gap junction protein connexins. We will detail their implication in mucosal homeostasis and upon infection with bacteria in the respiratory and the gastrointestinal tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号