首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Characterization of an Epstein-Barr virus-induced DNA polymerase.   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

2.
3.
Specific immune serum to the Epstein-Barr virus DNA polymerase.   总被引:2,自引:1,他引:1       下载免费PDF全文
R G Petit  K Leung    J E Shaw 《Journal of virology》1987,61(10):3331-3334
Epstein-Barr virus (EBV) DNA polymerase was released from phorbol ester-treated tamarin (Saguinus oedipus) cells (B95-8) and prepared for use as an antigen by sequential column chromatography with DEAE-Sephadex A-25, DEAE-cellulose, phosphocellulose, and single-stranded DNA cellulose. Proteins from single-stranded DNA cellulose with DNA polymerase activity in 100 mM ammonium sulfate were mixed with complete Freund adjuvant and injected intradermally into rats and rabbits. Immune sera that were screened for specific antibody by indirect immunofluorescence procedures reacted with approximately 3% of the cells in EBV-producer cultures (B95-8 and P3HR-1) but not with EBV genome-negative cells (BJAB). In functional enzyme assays, immune sera or the immunoglobulin fraction inhibited the activity of purified EBV DNA polymerase 90%. Inhibition of enzyme activity was not affected by absorption of immune sera with insoluble matrices of proteins prepared with tamarin and human cells which lacked the EBV genome. Cellular DNA polymerase alpha was not inhibited by immune sera to the EBV enzyme.  相似文献   

4.
The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.  相似文献   

5.
Polyclonal antibodies responding specifically to the N-terminal, central and C-terminal polypeptide domains of the herpes simplex virus type I (HSV-1) DNA polymerase of strain Angelotti were generated. Each of the five different rabbit antisera reacted specifically with a viral 132 +/- 5-kDa polypeptide as shown by immunoblot analysis. Enzyme binding and inhibition studies revealed that antibodies raised to the central and the C-terminal domains of the protein inhibited the polymerizing activity by 70-90%, respectively, which is well in line with the proposed site of the catalytic center of the enzyme and with the possible involvement of these polypeptide chains in DNA-protein interactions. In agreement with this, antibodies directed towards the N-terminal domain bound to the enzyme without effecting the enzymatic activity. The strong binding but low inhibitory properties of antibodies directed to the polypeptide region between residues 1072 and 1146 confirms previous suggestions that these C-terminal sequences, which share no homology to the Epstein-Barr virus DNA polymerase, are less likely involved in the building of the polymerase catalytic site. Antibodies, raised to the very C terminus of the polymerase (EX3), were successfully used to identify a single 132 +/- 5-kDa polypeptide, which coeluted with the HSV DNA polymerase activity during DEAE-cellulose chromatography, and were further shown to precipitate a major viral polypeptide of identical size. From the presented data it can be concluded that the native enzyme consists of a single polypeptide with a size predicted from the long open reading frame of the HSV-1 DNA polymerase gene.  相似文献   

6.
9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is a new antiviral compound with activity against herpes simplex virus (HSV) and retroviruses including human immunodeficiency virus. Although it has been suggested that the anti-HSV action of PMEA is through inhibition of the viral DNA polymerase via the diphosphorylated metabolite of PMEA (PMEApp), no conclusive evidence for this has been presented. We report that in cross-resistance studies, a PMEA-resistant HSV variant (PMEAr-1) was resistant to phosphonoformic acid, a compound which directly inhibits the HSV DNA polymerase. In addition, phosphonoformic acid-resistant HSV variants with defined drug resistance mutations within the HSV DNA polymerase gene were resistant to PMEA. Furthermore, the HSV DNA polymerase purified from PMEAr-1 was resistant to PMEApp in comparison with the enzyme from the parental virus. Moreover, PMEA inhibited HSV DNA synthesis in cell culture. These results provide strong evidence that HSV DNA polymerase is the major target for the anti-viral action of PMEA. Further studies showed that HSV DNA polymerase incorporated PMEApp into DNA in vitro, while the HSV polymerase-associated 3'-5' exonuclease was able to remove the incorporated PMEA. Thus, the inhibition of HSV DNA polymerase by PMEApp appears to involve chain termination after its incorporation into DNA.  相似文献   

7.
Infection of WI-38 human fibroblasts with varicella-zoster virus led to the stimulation of host cell DNA polymerase synthesis and induction of a new virus-specific DNA polymerase. This virus-induced DNA polymerase was partially purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. This virus-induced enzyme could be distinguished from host cell enzyme by its chromatographic behavior, template specificity, and its requirement of salt for maximal activity. The enzyme could efficiently use poly(dC).oligo(dG)12-18 as well as poly(dA).oligo(dT)12-18 as template-primers. It required Mg2+ for maximal polymerization activity and was sensitive to phosphonoacetic acid, to which host alpha- and beta-DNA polymerase were relatively resistant. In addition, this induced DNA polymerase activity was enhanced by adding 60 mM (NH4)2SO4 to the reaction mixture.  相似文献   

8.
We have determined the levels of cellular DNA polymerases and Epstein-Barr virus specific DNA polymerase in three Burkitt's lymphoma cell lines producing varying amounts of EBV, one of which was induced by 12-0-tetra-decanoylphorbol-13-acetate (TPA). There was a proportional increase in the level of EBV-DNA polymerase with an increase in the percent of virus-producing cells. However, there was a reciprocal relationship between the levels of EBV-DNA polymerase and DNA polymerase alpha i.e., in cell line containing the highest level of EBV-DNA polymerase, activity of DNA polymerase alpha, but not of DNA polymerase beta, was reduced to an insignificantly low level. TPA does not have any direct effect on activities of either EBV-DNA polymerase or DNA polymerase alpha. EBV-DNA polymerases isolated from cells grown with or without TPA are indistinguishable in their properties such as elution position on phosphocellulose column, molecular weight, mono and divalent cation requirements, pH optimum, and other requirements for optimum activity. Addition of crude extracts of cells grown in presence of TPA to the purified DNA polymerase alpha did not inhibit its activity indicating that the observed loss was not due to any specific inhibitor present in TPA treated cells. Raji, a nonproducer cell line, did not contain EBV-DNA polymerase. There was no induction of EBV-DNA polymerase when Raji cells were grown in presence of TPA. The phenomenon of reduction in the levels of DNA polymerase alpha in cells induced to produce EBV may represent a mechanism by which the host DNA replication is shut off following virus infection.  相似文献   

9.
The role of Epstein-Barr virus (EBV) early antigen diffuse component (EA-D) and its relationship with EBV DNA polymerase in EBV genome-carrying cells are unclear, EBV-specified DNA polymerase was purified in a sequential manner from Raji cells treated with phorbol-12,13-dibutyrate and n-butyrate by phosphocellulose, DEAE-cellulose, double-stranded DNA-cellulose, and blue Sepharose column chromatography. Four polypeptides with molecular masses of 110,000, 100,000, 55,000, and 49,000 daltons were found to be associated with EBV-specified DNA polymerase activity. A monoclonal antibody which could neutralize the EBV DNA polymerase activity was prepared and found to recognize 55,000- and 49,000-dalton polypeptides. An EA-D monoclonal antibody, R3 (G. R. Pearson, V. Vorman, B. Chase, T. Sculley, M. Hummel, and E. Kieff, J. Virol. 47:183-201, 1983), was also able to recognize these same two polypeptides associated with EBV DNA polymerase activity. It was concluded that EBV EA-D polypeptides, as identified by R3 monoclonal antibody, are critical components of EBV DNA polymerase.  相似文献   

10.
11.
1-beta-D-Arabinofuranosylthymine (araT) is a selective inhibitor of Epstein-Barr virus replication induced in both thymidine kinase (TK)-negative (TK-) and TK+ variants of the lymphoid cell line P3HR-I. This analog has no effect on the growth of noninduced cells (T. Ooka and A. Calender, Virology 104:219-223, 1980). The synthesis of early antigens is not affected by the analog, whereas that of late viral capsid antigens is completely inhibited, as demonstrated by the indirect immunofluorescence technique; kinetic reassociation experiments have also shown that araT strongly inhibits replication of viral DNA. Phosphorylation of the tritiated form of the analog ([3H]araT) was analyzed by thin-layer chromatography in cultures of control and induced cells, and the results demonstrated that only induced cells can convert the analog to the triphosphate form. These results indicate that the selective effect of araT in induced cells is probably related to a new virally induced TK activity. Preliminary characterization of this new activity has shown that it is able to phosphorylate the analog specifically, whereas cellular TKs cannot. araTTP, a final phosphorylation product of araT, is a potent inhibitor of Epstein-Barr virus-specific DNA polymerase, suggesting a possible inhibitory action of this product on Epstein-Barr virus replication.  相似文献   

12.
Biochemical characterization of the herpes simplex virus (HSV) DNA polymerase, a model DNA polymerase and an important target for antiviral drugs, has been limited by a lack of pure enzyme in sufficient quantity. To overcome this limitation, the HSV DNA polymerase gene was introduced into the baculovirus, Autographa californica nuclear polyhedrosis virus, under the control of the polyhedrin promoter to give rise to a recombinant baculovirus, BP58. BP58-infected Spodoptera frugiperda insect cells expressed a polypeptide that was indistinguishable from authentic polymerase by several immunological and biochemical properties, at levels approximately ten-fold higher per infected cell than found in HSV-infected Vero cells. The DNA polymerase was purified to apparent homogeneity from BP58-infected insect cells. Using activated DNA as primer-template, the purified enzyme exhibited specific activity similar to that of enzyme isolated from HSV-infected Vero cells, indicating that additional polymerase-associated proteins from HSV-infected cells are not critical for activity with this primer-template. 3'-5' exonuclease activity co-purified with the BP58-expressed HSV DNA polymerase, demonstrating that this activity is intrinsic to the polymerase polypeptide. The purified enzyme also exhibited RNAse H activity. The recombinant baculovirus should permit detailed biochemical and biophysical studies of this enzyme.  相似文献   

13.
14.
The DNA polymerase from the Mason-Pfizer monkey virus (M-PMV), an RNA tumor virus not typical type-C or type-B, has been purified a thousand-fold over the original crude viral suspension. This purified enzyme is compared to a similarly purified DNA polymerase from the primate woolly monkey virus, a type-C virus. The two enzymes have similar template specificities but differ in their requirements for optimum activity. Both DNA polymerases have a pH optimum of 7.3 in Tris buffer. M-PMV enzyme has maximum activity with 5 mM Mg(2+) and 40 mM potassium chloride, whereas the woolly monkey virus optima are 100 mM potassium chloride with 0.8 mM Mn(2+). The apparent molecular weight of the M-PMV enzyme is approximately 110,000, whereas the woolly monkey virus polymerase is approximately 70,000. The biochemical properties of these two enzymes were also compared to a similarly purified enzyme from a type-C virus from a lower mammal (Rauscher murine leukemia virus). The results show that more similarity exists between the DNA polymerases from viruses of the same type (type-C), than between the polymerases from viruses of different types but from closely related species.  相似文献   

15.
An Epstein-Barr virus (EBV)-specific DNase was induced in EBV nonproducer Raji cells after treatment with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate. The increase in EBV DNase activity was related to the appearance of early antigen-positive cells. The enzyme had a sedimentation coefficient of 4S and was resistant to 300 mM KCl, and its induction did not depend on viral DNA synthesis. The EBV-specific DNase activity was specifically inhibited by sera from patients who had nasopharyngeal carcinoma with high early antigen activities but not by sera from normal, healthy individuals. There was a correlation between the degree of anti-EBV DNase activity and the titers of early antigen antibody.  相似文献   

16.
A high molecular weight membrane-bound DNA polymerase from the mouse myeloma, MOPC-104E, has been purified extensively, and characterized with regard to physical and reaction properties. This enzyme, which is readily distinguishable from other myeloma enzymes that are analogous to the recognized forms of cellular DNA polymerase, is ddesignated DNA polymerase III. DNA polymerase III activity in whole homogenates from MOPC-104E was solubilized and then prurifed using a series of ion-exchange chromatographic procedures followed by DNA-cellulose chromatography and glycerol gradient centrifugation; the enzyme activity as measured with poly(rA)-(dT)12-18 as template-primer and Mn2+ as divalent cation, was purified as much as 18,000-fold. In the final stages of the pruification, DNA polymerase III possessed no detectable RNA polymerase activity, nucleoside diphosphokinase activity, or nucease activity toward DNA or single- and double-stranded RNA...  相似文献   

17.
J E Shaw 《Journal of virology》1985,53(3):1012-1015
Selective DNA extraction and hybridization procedures were used to estimate the relative number of covalently closed circular viral genomes in cultures of Epstein-Barr virus (EBV)-transformed cells. In virus-producing P3HR-1 cultures that were exposed for 11 days to phosphonoacetic acid or to acyclovir, the content of covalently closed circular EBV DNA was reduced ca. 70% relative to a control culture without drug. The EBV plasmid content of Raji, a virus nonproducer cell line, was not reduced by exposure to these compounds. When P3HR-1 cultures were exposed to 12-O-tetradecanoylphorbol-13-acetate, the number of circular genomes per cell increased. These findings indicate that two enzyme activities synthesize circular EBV DNA and that the virus-associated DNA polymerase synthesizes most of the circular EBV DNA in a virus producer culture. It is suggested that the circular genomes synthesized by the viral enzyme are intermediates in the syntheses of linear virus DNA.  相似文献   

18.
The diterpene ester promoter of mouse skin tumors, 12-O-tetradecanoyl-phorbol-13-acetate, induced a DNase activity in the Epstein-Barr virus-producer cell line P3HR-1. The elution patterns of the enzyme from DEAE-cellulose, phosphocellulose, and DNA-cellulose columns were different from virus-associated DNA polymerase activity. The partially purified activity could be neutralized to the extent of 90% by sera of patients with nasopharyngeal carcinoma. Purified immunoglobulin G from sera of nasopharyngeal carcinoma patients inhibited this enzyme and that obtained from superinfected Raji cells to the same extent. The partially purified enzyme preferred native DNA as a substrate over denatured DNA and 3'-terminally labeled activated calf thymus DNA. The activity was inhibited by high ionic strength. Phosphonoformic acid did not have any effect on this enzyme activity.  相似文献   

19.
Epstein-Barr virus transformed human lymphocytes despite the presence of up to 500 microM acyclovir [9-(2-hydroxyethoxymethyl)guanine], a viral DNA polymerase inhibitor. The transformed cells contained multiple Epstein-Barr virus genome copy numbers. Functional viral DNA polymerase is probably not required for cell transformation and the initial amplification of the viral genome.  相似文献   

20.
Monospecific antiserum prepared against the isolated deoxyribonucleic acid (DNA) polymerase of avian myeloblastosis virus (AMV) neutralized the endogenous ribonucleic acid-instructed DNA polymerase activity of detergent-disrupted virus. The viral polymerase was serologically unrelated to the seven major structural polypeptides of AMV. Furthermore, the viral enzyme was distinguished from normal cellular DNA polymerases by serological criteria; thus, antiserum against the viral enzyme neutralized its homologous antigen but not normal cellular DNA polymerases. Neutralization by antibody of viral DNA polymerase activity was observed with all avian leukemia-sarcoma viruses tested, irrespective of viral antigenic subtype. The DNA polymerase activity of avian reticuloendotheliosis virus, and of a variety of mammalian oncornaviruses, was not neutralized by antisera against the AMV polymerase. Immunological analysis of the RSValpha(O) mutant, which is deficient in DNA polymerase activity, shows this mutant to lack demonstrable polymerase antigen. Viral polymerase was identified by immunofluorescence as a cytoplasmic constituent in virus-producing chicken cells; polymerase antigen was not detected in uninfected (gs(-)) chicken cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号