首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
肽基载体蛋白(peptidyl carrier protein,PCP)是非核糖体肽合成酶(non-ribosomal peptide synthetase,NRPS)的核心结构域。根据NRPS的装配机制,每个模块都至少包含一个PCP,PCP对于非核糖体肽合成中氨基酸残基及多肽在不同催化结构域中的传递起着重要作用,并为氨基酸残基和多肽向模块内其他修饰酶的转移提供一个平台。本文主要对PCP的结构功能、与其他催化结构域的相互作用及重组模块活性降低的问题等方面进行了综述,期望为重组NRPS模块的构建提供理论依据。  相似文献   

2.
Degenerated primers designed for the detection by polymerase chain reaction of nonribosomal peptide synthetases (NRPS) genes involved in the biosynthesis of lipopeptides were used on genomic DNA from a new isolate of Bacillus thuringiensis CIP 110220. Primers dedicated to surfactin and bacillomycin detection amplified sequences corresponding respectively to the surfactin synthetase operon and to a gene belonging to a new NRPS operon identified in the genome of B. thuringiensis serovar pondicheriensis BSCG 4BA1. A bioinformatics analysis of this operon led to the prediction of an NRPS constituted of seven modules beginning with a condensation starter domain and which could be involved in the biosynthesis of a heptalipopeptide similar to kurstakin. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) performed on whole cells of B. thuringiensis CIP 110220 confirmed the production of kurstakin by this strain. The kurstakin operon was thus used to design a new set of degenerated primers specifically to detect kurstakin genes. These primers were used to screen kurstakin producers in a collection of nine B. thuringiensis strains isolated from different areas in Algeria and two from the Pasteur Institute collection. For eight among the 11 tested strains, the amplified fragment matched with an operon similar to the kurstakin operon and found in the newly sequenced genome of Bacillus cereus or B. thuringiensis serovar pulsiensis, kurstaki, and thuringiensis. Kurstakin production was detected by MALDI-ToF-MS on whole cells for six strains. This production was compared with the spreading of the strains and their antimicrobial activity. Only the spreading can be correlated with the kurstakin production.  相似文献   

3.
Lysobacter lactamgenus produces cephabacins, a class of beta-lactam antibiotics which have an oligopeptide moiety attached to the cephem ring at the C-3 position. The nonribosomal peptide synthetase (NRPS) system, which comprises four distinct modules, is required for the biosynthesis of this short oligopeptide, when one takes the chemical structure of these antibiotics into consideration. The cpbI gene, which has been identified in a region upstream of the pcbAB gene, encodes the NRPS - polyketide synthase hybrid complex, where NRPS is composed of three modules, while the cpbK gene -- which has been reported as being upstream of cpbI-- comprises a single NRPS module. An in silico protein analysis was able to partially reveal the specificity of each module. The four recombinant adenylation (A) domains from each NRPS module were heterologously expressed in Escherichia coli and purified. Biochemical data from ATP-PPi exchange assays indicated that L-arginine was an effective substrate for the A1 domain, while the A2, A3 and A4 domains activated L-alanine. These findings are in an agreement with the known chemical structure of cephabacins, as well as with the anticipated substrate specificity of the NRPS modules in CpbI and CpbK, which are involved in the assembly of the tetrapeptide at the C-3 position.  相似文献   

4.
埃博霉素(Epothilones)的PKS/NRPS杂合基因簇   总被引:2,自引:0,他引:2  
埃博霉素是由粘细菌纤维堆囊菌产生的一类具有促微管聚合活性的大环内酯类化合物。埃博霉素生物合成的多酶复合体是一个由多个功能模块组成,同时含有多聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)的大操纵子。根据同位素标记试验结果和合成酶全基因簇功能的推测,埃博霉素的生物合成包括聚酮链的引发、链合成的起始和噻唑环的形成、链的延伸和转移、链合成的终止释放和环化、及产物的后修饰5个阶段。埃博霉素的PKS/NRPS杂合基因簇是开展组合生物合成研究的良好材料。  相似文献   

5.
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.  相似文献   

6.
Many secondary metabolic peptides from bacteria and fungi are produced by non-ribosomal peptide synthetases (NRPS) where the final step of biosynthesis is often catalysed by designated thioesterase domains. Here, we report the 1.8A crystal structure of the fengycin thioesterase (FenTE) from Bacillus subtilis F29-3, which catalyses the regio- and stereoselective release and macrocyclization of the antibiotic fengycin from the NRPS template. A structure of the PMSF-inactivated FenTE domain suggests the location of the oxyanion hole and the binding site of the C-terminal residue l-Ile11 of the lipopeptide. Using a combination of docking, molecular dynamics simulations and in vitro activity assays, a model of the FenTE-fengycin complex was derived in which peptide cyclization requires strategic interactions with residues lining the active site canyon.  相似文献   

7.
Many bacteria use nonribosomal peptide synthetase (NRPS) proteins to produce peptide antibiotics and siderophores. The catalytic domains of the NRPS proteins are usually linked in large multidomain proteins. Often, additional proteins are coexpressed with NRPS proteins that modify the NRPS peptide products, ensure the availability of substrate building blocks, or play a role in the import or export of the NRPS product. Many NRPS clusters include a small protein of approximately 80 amino acids with homology to the MbtH protein of mycobactin synthesis in Mycobacteria tuberculosis; no function has been assigned to these proteins. Pseudomonas aeruginosa utilizes an NRPS cluster to synthesize the siderophore pyoverdine. The pyoverdine peptide contains a dihydroxyquinoline-based chromophore, as well as two formyl-N-hydroxyornithine residues, which are involved in iron binding. The pyoverdine cluster contains four modular NRPS enzymes and 10-15 additional proteins that are essential for pyoverdine production. Coexpressed with the pyoverdine synthetic enzymes is a 72-amino acid MbtH-like family member designated PA2412. We have determined the three-dimensional structure of the PA2412 protein and describe here the structure and the location of conserved regions. Additionally, we have further analyzed a deletion mutant of the PA2412 protein for growth and pyoverdine production. Our results demonstrate that PA2412 is necessary for the production or secretion of pyoverdine at normal levels. The PA2412 deletion strain is able to use exogenously produced pyoverdine, showing that there is no defect in the uptake or utilization of the iron-pyoverdine complex.  相似文献   

8.
The structural and catalytic similarities between modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) inspired us to search for hybrid NRPS-PKS systems. By examining the biochemical and genetic data known to date for the biosynthesis of hybrid peptide-polyketide natural products, we show (1) that the same catalytic sites are conserved between the hybrid NRPS-PKS and normal NRPS or PKS systems, although the ketoacyl synthase domain in NRPS/PKS hybrids is unique, and (2) that specific interpolypeptide linkers exist at both the C- and N-termini of the NRPS and PKS proteins, which presumably play a critical role in facilitating the transfer of the growing peptide or polyketide intermediate between NRPS and PKS modules in hybrid NRPS-PKS systems. These findings provide new insights for intermodular communications in hybrid NRPS-PKS systems and should now be taken into consideration in engineering hybrid peptide-polyketide biosynthetic pathways for making novel "unnatural" natural products.  相似文献   

9.
The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.  相似文献   

10.
微生物许多非核糖体肽类次生代谢产物主要是由非核糖体肽合成酶(NRPS)催化合成。参考Gontang发布的非核糖体肽合成酶(NRPS)通用引物设计扩增NRPS腺苷酰化结构域基因序列的特异引物,从海洋链霉菌L1的基因组DNA中扩增获得一个715 bp的NRPS基因序列。测序结果及比对分析表明该片段属于NRPS腺苷酰化结构域部分序列。对其拟翻译的氨基酸序列组成成分、理化性质进行分析,显示其包含AFD class I超基因家族核心结合区,为NRPS腺苷酰化结构域(A结构域)所在区域。对氨基酸序列的二级结构预测和三级结构模拟,发现与数据库中肠菌素合酶F组分的结构相似。为后续研究A结构域的特异性及完整NRPS基因簇克隆提供了参考。  相似文献   

11.
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., H?lter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.  相似文献   

12.
The most common sequences of peptaibiotics are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of three Trichoderma strains of the major clades reveal the presence of up to three types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid-adding modules. Here, we provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina), and T. atroviride produces both 11- and 14-residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis of their amino acid-activating domains and modules. The sequences of these peptides may be predicted from the gene sequences and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 sequences determined, 2 new), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.  相似文献   

13.
Nonribosomal peptide synthetases (NRPSs) are large, multidomain proteins that are involved in the biosynthesis of an array of secondary metabolites. We report the structure of the third adenylation domain from the siderophore-synthesizing NRPS, SidN, from the endophytic fungus Neotyphodium lolii. This is the first structure of a eukaryotic NRPS domain, and it reveals a large binding pocket required to accommodate the unusual amino acid substrate, Nδ-cis-anhydromevalonyl-Nδ-hydroxy-l-ornithine (cis-AMHO). The specific activation of cis-AMHO was confirmed biochemically, and an AMHO moiety was unambiguously identified as a component of the fungal siderophore using mass spectroscopy. The protein structure shows that the substrate binding pocket is defined by 17 amino acid residues, in contrast to both prokaryotic adenylation domains and to previous predictions based on modeling. Existing substrate prediction methods for NRPS adenylation domains fail for domains from eukaryotes due to the divergence of their signature sequences from those of prokaryotes. Thus, this new structure will provide a basis for improving prediction methods for eukaryotic NRPS enzymes that play important and diverse roles in the biology of fungi.  相似文献   

14.
Pseudomonas syringae pv. syringae, which causes the bacterial apical necrosis of mango, produces the antimetabolite mangotoxin. We report here the cloning, sequencing, and identity analysis of a chromosomal region of 11.1 kb from strain P syringae pv. syringae UMAF0158, which is involved in mangotoxin biosynthesis. This chromosomal region contains six complete open reading frames (ORFs), including a large gene (ORF5) with a modular architecture characteristic of nonribosomal peptide synthetases (NRPS) named mgoA. A Tn5 mutant disrupted in mgoA was defective in mangotoxin production, revealing the involvement of the putative NRPS gene in the biosynthesis of mangotoxin. This derivative strain impaired in mangotoxin production also showed a reduction in virulence as measured by necrotic symptoms on tomato leaflets. Mangotoxin production and virulence were restored fully in the NRPS mutant by complementation with plasmid pCG2-6, which contains an 11,103-bp chromosomal region cloned from the wild-type strain P syringae pv. syringae UMAF0158 that includes the putative NPRS gene (mgoA). The results demonstrate that mgoA has a role in the virulence of P. syringae pv. syringae. The involvement of an NRPS in the production of an antimetabolite toxin from P. syringae inhibiting ornithine acetyltransferase activity is proposed.  相似文献   

15.
BACKGROUND: Nonribosomal peptide synthetases (NRPSs) are large modular enzymes responsible for the synthesis of a variety of microbial bioactive peptides. They consist of modules that each recognise and incorporate one specific amino acid into the peptide product. A module comprises several domains, which carry out the individual reaction steps. After activation by the adenylation domain, the amino acid substrate is covalently tethered to a 4'-phosphopantetheinyl cofactor of a peptidyl carrier domain (PCP) that passes the substrate to the reaction centres of the consecutive domains. RESULTS: The solution structure of PCP, a distinct peptidyl carrier protein derived from the equivalent domain of an NRPS, was solved using NMR techniques. PCP is a distorted four-helix bundle with an extended loop between the first two helices. Its overall fold resembles the topology of acyl carrier proteins (ACPs) from Escherichia coli fatty acid synthase and actinorhodin polyketide synthase from Streptomyces coelicolor; however, the surface polarity and the length and relative alignment of the helices are different. The conserved serine, which is the cofactor-binding site, has the same location as in the ACPs and is situated within a stretch of seven flexible residues. CONCLUSIONS: The structure of PCP reflects its character as a protein domain. The fold is well defined between residues 8 and 82 and the structural core of the PCP domain can now be defined as a region spanning 37 amino acids in both directions from the conserved serine. The flexibility of the post-translationally modified site might have implications for interactions with the cooperating proteins or NRPS domains.  相似文献   

16.
Peptide synthetases are multi-domain proteins that catalyze the assembly, from amino acids and amino acid derivatives, of peptides and lipopeptides, some of which exhibit activities (pharmaceutical, surfactant, etc.) of considerable biotechnological importance. Although there is substantial interest in the generation of greater peptide diversity, in order to create new biotechnologically interesting products, attempts reported so far to exchange amino acid-activating minimal modules between enzymes have only yielded hybrid catalysts with poor activities. We report here the replacement of an entire first, L-Glu-, and fifth, L-Asp-incorporating modules of surfactin synthetase, to create a fully active hybrid enzyme that forms a novel peptide in high yields. Whole encoding regions of lichenysin A synthetase modules were introduced into surfactin biosynthesis operon between His140/His1185 of SrfAA and His1183/His2226 of SrfAB, the amino acid residues of a proposed active-site motif (HHXXXDG) of the condensation domains which is involved in the catalysis of nonribosomal peptide bond formation (Stachelhaus et al., 1998). When the lipopeptides produced by the recombinant Bacillus subtilis strains were purified and characterized, they appeared to be expressed approximately at the same level of the wild type surfactin and to be identical by their fatty acid profiles. We thereby demonstrate the utility of whole module swapping for designing novel peptides, for creating peptide diversity, and for redesigning existing peptides produced in performant production strains in high yields to correspond to desired peptides produced in low yields, or from strains unsuitable for production purposes.  相似文献   

17.
Recently, the solved crystal structure of a phenylalanine-activating adenylation (A) domain enlightened the structural basis for the specific recognition of the cognate substrate amino acid in nonribosomal peptide synthetases (NRPSs). By adding sequence comparisons and homology modeling, we successfully used this information to decipher the selectivity-conferring code of NRPSs. Each codon combines the 10 amino residues of a NRPS A domain that are presumed to build up the substrate-binding pocket. In this study, the deciphered code was exploited for the first time to rationally alter the substrate specificity of whole NRPS modules in vitro and in vivo. First, the single-residue Lys239 of the L-Glu-activating initiation module C-A(Glu)-PCP of the surfactin synthetase A was mutated to Gln239 to achieve a perfect match to the postulated L-Gln-activating binding pocket. Biochemical characterization of the mutant protein C-A(Glu)-PCP(Lys239 --> Gln) revealed the postulated alteration in substrate specificity from L-Glu to L-Gln without decrease in catalytic efficiency. Second, according to the selectivity-conferring code, the binding pockets of L-Asp and L-Asn-activating A domains differs in three positions: Val299 versus Ile, His322 versus Glu, and Ile330 versus Val, respectively. Thus, the binding pocket of the recombinant A domain AspA, derived from the second module of the surfactin synthetases B, was stepwisely adapted for the recognition of L-Asn. Biochemical characterization of single, double, and triple mutants revealed that His322 represents a key position, whose mutation was sufficient to give rise to the intended selectivity-switch. Subsequently, the gene fragment encoding the single-mutant AspA(His322 --> Glu) was introduced back into the surfactin biosynthetic gene cluster. The resulting Bacillus subtilis strain was found to produce the expected so far unknown lipoheptapeptide [Asn(5)]surfactin. This indicates that site-directed mutagenesis, guided by the selectivity-conferring code of NRPS A domains, represents a powerful alternative for the genetic manipulation of NRPS biosynthetic templates and the rational design of novel peptide antibiotics.  相似文献   

18.
Finking R  Mofid MR  Marahiel MA 《Biochemistry》2004,43(28):8946-8956
4'-Phosphopantetheinyl transferases (PPTases) are essential for the production of fatty acids by fatty acid synthases (primary metabolism) and natural products by nonribosomal peptide synthetases and polyketide synthases (secondary metabolism). These systems contain carrier proteins (CPs) for the covalent binding of reaction intermediates during synthesis. PPTases transfer the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto conserved serine residues of the apo-CPs to convert them to their functionally active holo form. In bacteria, two types of PPTases exist that are evolutionary related but differ in their substrate spectrum. Acyl carrier protein synthases (AcpSs) recognize CPs from primary metabolism, whereas Sfp- (surfactin production-) type PPTases have a preference for CPs of secondary metabolism. Previous investigations showed that a peptidyl carrier protein (PCP) of secondary metabolism can be altered to serve as substrate for AcpS. We demonstrate here that a single mutation in PCP suffices for the modification of this CP by AcpS, and we have identified by mutational analysis several other PCP residues and two AcpS residues involved in substrate discrimination by this PPTase. These altered PCPs were still capable of serving their designated function in NRPS modules, and selective use of AcpS or Sfp leads to production of two different products by a trimodular NRPS.  相似文献   

19.
The hybrid peptide–polyketide backbone of bleomycin (BLM) is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules. BlmIX/BlmVIII/BlmVII constitute a natural hybrid NRPS/PKS/NRPS system, serving as a model for both hybrid NRPS/PKS and PKS/NRPS systems. Sequence analysis and functional comparison of domains and modules of BlmIX/BlmVIII/BlmVII with those of nonhybrid NRPS and PKS systems suggest that (1) the same catalytic sites appear to be conserved in both hybrid NRPS–PKS and nonhybrid NRPS or PKS systems, with the exception of the KS domains in the hybrid NRPS/PKS systems that are unique; (2) specific interpolypeptide linkers may play a critical role in intermodular communication to facilitate transfer of the growing intermediates between the interacting NRPS and/or PKS modules; and (3) posttranslational modification of the BLM megasynthetase has been accomplished by a single PPTase with a broad substrate specificity toward the apo forms of both acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). Journal of Industrial Microbiology & Biotechnology (2001) 27, 378–385. Received 08 June 2001/ Accepted in revised form 18 July 2001  相似文献   

20.
Hillson NJ  Walsh CT 《Biochemistry》2003,42(3):766-775
Nonribosomal peptide synthetases (NRPS), fatty acid synthases (FAS), and polyketide sythases (PKS) are multimodular enzymatic assembly lines utilized in natural product biosynthesis. Previous data on FAS and PKS subunits have indicated that they are homodimers and that some of their catalytic functions can work in trans. When NRPS assembly lines have been probed for comparable formation of stable oligomers, no evidence had been forthcoming that species other than monomer forms were active. In this work we focus on the six-domain (Cy1-Cy2-A-C1-PCP-C2) enzyme VibF from the vibriobactin synthetase assembly line, which contains three other proteins, VibB, VibE, and VibH, that--when purified and mixed with VibF and the substrates ATP, threonine, 2,3-dihydroxybenzoate (DHB), and norspermidine--produce the iron chelator vibriobactin. Using a deletion of the Cy1 domain and separate inactivating mutations in the Cy2, A, PCP, and C2 domains of VibF, we report regain of catalytic activity upon mutant protein mixing that argues for heterodimer formation, stable for hundreds to thousands of catalytic cycles, with acyl chain processing and transfer around blocked domains. Ultracentrifugation data likewise confirm a dimeric structure for VibF and establish that domains within NRPS dimeric modules can act on acyl chains in trans. The results described here are the first indication for an NRPS subunit that homodimerization can occur and that there is a continuum of functional oligomerization states between monomers and dimers in nonribosomal peptide synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号