首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
范燚  韩新焕  郁芸 《生物信息学》2012,10(3):169-173
查询人的BRCA1蛋白的氨基酸序列,利用生物信息学的方法进行相似性搜索,获得一系列BRCA1蛋白的氨基酸序列。选择了其中的11条序列,对BRCA1蛋白进行了多重序列分析和进化分析,对BRCA1蛋白的BRCT结构域进行三维同源模型的构建与比较分析。分析结果表明:BRCA1中某些特定部位的氨基酸序列高度保守;确定氨基酸的保守位点并联合进化分析可对基因错义突变的致病性做初步地猜测;相近物种来源的BRCA1具有较近的亲缘关系,而且具有极其相似的三维空间结构。这些为研究BRCA1蛋白的结构与功能关系提供指导意义。  相似文献   

3.
4.
We report experimental evidence that BRCA1, a breast and ovarian cancer susceptibility gene, is up-regulated in response to prolactin (PRL) stimulation. Expression of the BRCA1 gene was monitored in 2 human breast cancer cell lines (MCF-7 and T-47D) and in the normal mammary epithelial cell line MCF10a. Using competitive RT-PCR, we have shown that PRL induced an increase in BRCA1 mRNA level in MCF-7 and T-47D cell lines at a dose resulting in the maximal enhancement of cell proliferation. The up-regulation was 12-fold in MCF-7 cells and 2-fold in T-47D cells. No increase in BRCA1 mRNA level was observed in the MCF10a cell line. The level of BRCA1 protein was quantified using an affinity chromatography strategy. At the protein level, PRL treatment induced a 4-fold increase of BRCA1 protein expression in MCF-7 and a 6-fold increase in T-47D cells, whereas BRCA1 protein expression was not affected by PRL in MCF10a.  相似文献   

5.
Recent years have witnessed tremendous progress in our structural and biophysical understanding of how replication protein A (RPA), a major nuclear ssDNA-binding protein (SSB), binds DNA. The four ssDNA-binding domains of RPA have the characteristic OB (oligonucleotide/oligosaccharide-binding) fold and contact DNA with specific polarity via a hierarchy-driven dynamic pathway. A growing mass of data suggest that many aspects of the ssDNA binding mechanism are conserved among SSBs of different origin. However, this conservation is not restricted to the SSB class. The concepts of ssDNA binding by the OB-fold, first derived from the RPA structure, have been successfully applied to the functional characterization of the BRCA2 (breast cancer susceptibility gene 2) protein. The BRCA2 structure, in its turn, has helped to better understand RPA function.  相似文献   

6.
Individuals carrying a germ line mutation of the breast cancer susceptibility gene BRCA2 are predisposed to breast, ovarian, and other types of cancer. The BRCA2 protein has been proposed to function in the repair of DNA double-strand breaks. Using an immunopurification-mass spectrometry approach to identify novel proteins that associate with the BRCA2 gene product, we found that a deubiquitinating enzyme, USP11, formed specific complexes with BRCA2. Moreover, BRCA2 was constitutively ubiquitinated in vivo in the absence of detectable proteasomal degradation. Mitomycin C (MMC) led to decreased BRCA2 protein levels associated with increased ubiquitination, consistent with proteasome-dependent degradation. While BRCA2 could be deubiquitinated by USP11 in transient overexpression assays, a catalytically inactive USP11 mutant had no effect on BRCA2 ubiquitination or protein levels. Antagonism of USP11 function either through expression of this mutant or through RNA interference increased cellular sensitivity to MMC in a BRCA2-dependent manner. All of these results imply that BRCA2 expression levels are regulated by ubiquitination in the cellular response to MMC-induced DNA damage and that USP11 participates in DNA damage repair functions within the BRCA2 pathway independently of BRCA2 deubiquitination.  相似文献   

7.
8.
9.
为分析乳腺癌易感基因2(breast cancer susceptibility gene 2, BRCA2)蛋白与中心体BRCA2相互作用蛋白(centromal BRCA2 interacting protein, centrobin)间相互作用及其细胞定位的关系,探讨二者功能上的联系,本研究采用哺乳细胞双杂交实验检测体内结合并初步判定BRCA2分子上的结合区域;免疫共沉淀实验进一步验证其体内结合活性,GST-pulldown法检测其体外结合活性,免疫组织化学染色观测BRCA2蛋白的细胞定位及在有丝分裂各期centrobin的细胞定位.结果显示,BRCA2与centrobin间存在体内和体外结合,且BRCA2分子的结合区域主要位于2 393~2 952氨基酸残基处;外源表达BRCA2定位于中心体,在有丝分裂各时相centrobin均定位于中心体. BRCA2与centrobin在体内形成复合物,并存在直接物理结合作用,二者存在细胞空间定位的一致性.该结果为进一步研究BRCA2在中心体复制中的调控作用提供了线索.  相似文献   

10.
The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.  相似文献   

11.
12.
13.
The BRCA1 gene encodes a large multidomain protein of 1863 residues, mutations in which lead to breast cancer. Studies to elucidate the mechanisms by which BRCA1 prevents tumour formation have been restricted by the size of the protein. Unable to purify large amounts of the full-length protein, we have identified a fragment of BRCA1, amino acid residues 230-534, that when cloned into the expression vector pET 22b and expressed in Escherichia coli is found predominantly in the soluble portion of the cell lysate. The resulting protein was purified to homogeneity and studies reveal that BRCA1 230-534 binds specifically to four-way junction DNA when compared to duplex and single-stranded DNA.  相似文献   

14.
Germ line mutations in the breast cancer susceptibility gene BRCA2 predispose to early-onset breast cancer, but the function of the nuclear protein encoded by the gene is ill defined. Using the yeast two-hybrid system with fragments of human BRCA2, we identified an interaction with the human DSS1 (deleted in split hand/split foot) gene. Yeast and mammalian two-hybrid assays showed that DSS1 can associate with BRCA2 in the region of amino acids 2472 to 2957 in the C terminus of the protein. Using coimmunoprecipitation of epitope-tagged BRCA2 and DSS1 cDNA constructs transiently expressed in COS cells, we were able to demonstrate an association. Furthermore, endogenous BRCA2 could be coimmunoprecipitated with endogenous DSS1 in MCF7 cells, demonstrating an in vivo association. Apparent orthologues of the mammalian DSS1 gene were identified in the genome of the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Yeast strains in which these DSS1-like genes were deleted showed a temperature-sensitive growth phenotype, which was analyzed by flow cytometry. This provides evidence for a link between the BRCA2 tumor suppressor gene and a gene required for completion of the cell cycle.  相似文献   

15.
16.
17.
18.
The breast cancer 2, early onset protein (BRCA2) is central to the repair of DNA damage by homologous recombination. BRCA2 recruits the recombinase RAD51 to sites of damage, regulates its assembly into nucleoprotein filaments and thereby promotes homologous recombination. Localization of BRCA2 to nuclear foci requires its association with the partner and localizer of BRCA2 (PALB2), mutations in which are associated with cancer predisposition, as well as subtype N of Fanconi anaemia. We have determined the structure of the PALB2 carboxy‐terminal β‐propeller domain in complex with a BRCA2 peptide. The structure shows the molecular determinants of this important protein–protein interaction and explains the effects of both cancer‐associated truncating mutants in PALB2 and missense mutations in the amino‐terminal region of BRCA2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号